Time filter

Source Type

Montpellier, France

Cacas J.-L.,IRD Montpellier
Plant, Cell and Environment | Year: 2010

Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems. © 2010 Blackwell Publishing Ltd.

McCoy K.D.,IRD Montpellier
Frontiers in cellular and infection microbiology | Year: 2013

Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

Oslisly R.,IRD Montpellier
Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2013

Central Africa includes the world's second largest rainforest block. The ecology of the region remains poorly understood, as does its vegetation and archaeological history. However, over the past 20 years, multidisciplinary scientific programmes have enhanced knowledge of old human presence and palaeoenvironments in the forestry block of Central Africa. This first regional synthesis documents significant cultural changes over the past five millennia and describes how they are linked to climate. It is now well documented that climatic conditions in the African tropics underwent significant changes throughout this period and here we demonstrate that corresponding shifts in human demography have had a strong influence on the forests. The most influential event was the decline of the strong African monsoon in the Late Holocene, resulting in serious disturbance of the forest block around 3500 BP. During the same period, populations from the north settled in the forest zone; they mastered new technologies such as pottery and fabrication of polished stone tools, and seem to have practised agriculture. The opening up of forests from 2500 BP favoured the arrival of metallurgist populations that impacted the forest. During this long period (2500-1400 BP), a remarkable increase of archaeological sites is an indication of a demographic explosion of metallurgist populations. Paradoxically, we have found evidence of pearl millet (Pennisetum glaucum) cultivation in the forest around 2200 BP, implying a more arid context. While Early Iron Age sites (prior to 1400 BP) and recent pre-colonial sites (two to eight centuries BP) are abundant, the period between 1600 and 1000 BP is characterized by a sharp decrease in human settlements, with a population crash between 1300 and 1000 BP over a large part of Central Africa. It is only in the eleventh century that new populations of metallurgists settled into the forest block. In this paper, we analyse the spatial and temporal distribution of 328 archaeological sites that have been reliably radiocarbon dated. The results allow us to piece together changes in the relationships between human populations and the environments in which they lived. On this basis, we discuss interactions between humans, climate and vegetation during the past five millennia and the implications of the absence of people from the landscape over three centuries. We go on to discuss modern vegetation patterns and African forest conservation in the light of these events.

Georgiades K.,IRD Montpellier
Clinical Microbiology and Infection | Year: 2012

Virulence factors are thought to be responsible for the virulence capacity of pathogenic bacteria. However, epidemic bacteria were recently found to contain significantly fewer 'virulence factors' than non-epidemic species, and some of the most dangerous epidemic bacteria, such as Mycobacteria spp. and Rickettsia spp., have reduced genomes, and contain hundreds of degraded genes. Epidemic bacteria are actually highly specialized species, characterized by allopatric speciation, that, after adapting to their hosts, attempt to maintain a balance between gene gain and gene loss that favours gene loss, finally leading to genome reduction. Recent comparative genomic studies have demonstrated that the specialization of bacteria to eukaryotic cells is associated with massive gene loss. Furthermore, the 12 deadliest epidemic species for humankind have significantly smaller genomes, with fewer open reading frames, than less dangerous species. Epidemic species mostly lose genes related to metabolic activity, the production of energy, cell motility, and transcription. Epidemic bacteria also possess a damaged recombination and repair system and significantly more toxins than closely related non-pathogenic or non-epidemic species, and more toxin-antitoxin modules. Epidemic bacteria are therefore highly specialized species that are adapted to their hosts and characterized by extensive genome reduction. Except for toxins and toxin-antitoxin modules, which have a direct and measurable effect, other 'virulence factors' are factors associated with fitness in experimental models. Epidemic species are defined by a virulent genomic repertoire including both present and absent genes. © 2012 The Author. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.

Discover hidden collaborations