Irccs Centro San Giovanni Of Dio Fatebenefratelli

San Giovanni al Natisone, Italy

Irccs Centro San Giovanni Of Dio Fatebenefratelli

San Giovanni al Natisone, Italy
Time filter
Source Type

Fertonani A.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Pirulli C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
Journal of Neuroscience | Year: 2011

Perceptual learning is considered a manifestation of neural plasticity in the human brain.Weinvestigated brain plasticity mechanisms in a learning task using noninvasive transcranial electrical stimulation (tES).Wehypothesized that different types of tES would have varying actions on the nervous system, which would result in different efficacies of neural plasticity modulation. Thus, the principal goal of the present study was to verify the possibility of inducing differential plasticity effects using two tES approaches [i.e., direct current stimulation (tDCS) and random noise stimulation (tRNS)] during the execution of a visual perceptual learning task. One hundred seven healthy volunteers participated in the experiment. High-frequency tRNS (hf-tRNS, 100-640 Hz), low-frequency tRNS (lf-tRNS, 0.1-100 Hz), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), and sham stimulation were applied to the visual areas of the brain in a group of volunteers while they performed an orientation discrimination task. Furthermore, a control group was stimulated on the vertex (Cz). The analysis showed a learning effect during task execution that was differentially modulated according to the stimulation conditions. Post hoc comparisons revealed that hf-tRNS significantly improved performance accuracy compared with a-tDCS, c-tDCS, sham, and Cz stimulations. Our results confirmed the efficacy of hf-tRNS over the visual cortex in improving behavioral performance and showed its superiority in comparison to others tES.Weconcluded that the mechanism of action of tRNS was based on repeated subthreshold stimulations, which may prevent homeostasis of the system and potentiate task-related neural activity. This result highlights the potential of tRNS and advances our knowledge on neuroplasticity induction approaches. ©2011 the authors.

Pellicciari M.C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Brignani D.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
NeuroImage | Year: 2013

Anodal and cathodal transcranial direct current stimulations (tDCS) are both established techniques to induce cortical excitability changes. Typically, in the human motor system, such cortical modulations are inferred through changes in the amplitude of the motor evoked potentials (MEPs). However, it is now possible to directly evaluate tDCS-induced changes at the cortical level by recording the transcranial magnetic stimulation evoked potentials (TEPs) using electroencephalography (EEG).The present study investigated the modulation induced by the tDCS on the motor system. The study evaluates changes in the MEPs, in the amplitude and distribution of the TEPs, in resting state oscillatory brain activity and in behavioral performance in a simple manual response task. Both the short- and long-term tDCS effects were investigated by evaluating their time course at ~. 0 and 30. min after tDCS.Anodal tDCS over the left primary motor cortex (M1) induced an enhancement of corticospinal excitability, whereas cathodal stimulation produced a reduction. These changes in excitability were indexed by changes in MEP amplitude. More interestingly, tDCS modulated the cortical reactivity, which is the neuronal activity evoked by TMS, in a polarity-dependent and site-specific manner. Cortical reactivity increased after anodal stimulation over the left M1, whereas it decreased with cathodal stimulation. These effects were partially present also at long term evaluation.No polarity-specific effect was found either on behavioral measures or on oscillatory brain activity. The latter showed a general increase in the power density of low frequency oscillations (theta and alpha) at both stimulation polarities.Our results suggest that tDCS is able to modulate motor cortical reactivity in a polarity-specific manner, inducing a complex pattern of direct and indirect cortical activations or inhibitions of the motor system-related network, which might be related to changes in synaptic efficacy of the motor cortex. © 2013 Elsevier Inc.

Miniussi C.,University of Brescia | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Harris J.A.,University of Sydney | Ruzzoli M.,University Pompeu Fabra
Neuroscience and Biobehavioral Reviews | Year: 2013

Non-invasive brain stimulation (NIBS) is a method for the study of cognitive function that is quickly gaining popularity. It bypasses the correlative approaches of other imaging techniques, making it possible to establish a causal relationship between cognitive processes and the functioning of specific brain areas. Like lesion studies, NIBS can provide information about where a particular process occurs. However, NIBS offers the opportunity to study brain mechanisms beyond process localisation, providing information about when activity in a given brain region is involved in a cognitive process, and even how it is involved. When using NIBS to explore cognitive processes, it is important to understand not only how NIBS functions but also the functioning of the neural structures themselves. We know that NIBS techniques have the potential to transiently influence behaviour by altering neuronal activity, which may have facilitatory or inhibitory behavioural effects, and these alterations can be used to understand how the brain works. Given that NIBS necessarily involves the relatively indiscriminate activation of large numbers of neurons, its impact on a neural system can be easily understood as modulation of neural activity that changes the relation between noise and signal. In this review, we describe the mutual interactions between NIBS and brain activity and provide an updated and precise perspective on the theoretical frameworks of NIBS and their impact on cognitive neuroscience. By transitioning our discussion from one aspect (NIBS) to the other (cognition), we aim to provide insights to guide future research. © 2013 The Authors.

Civai C.,Donders Institute for Brain | Miniussi C.,University of Brescia | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Rumiati R.I.,International School for Advanced Studies
Social Cognitive and Affective Neuroscience | Year: 2014

Neural correlates of unfairness perception depend on who is the target of the unfair treatment. These previous findings suggest that the activation of medial prefrontal cortex (MPFC) is related to unfairness perception only when the subject of the measurement is also the person affected by the unfair treatment. We aim at demonstrating the specificity of MPFC involvement using transcranial direct current stimulation (tDCS), a technique that induces cortical excitability changes in the targeted region. We use a modified version of the Ultimatum Game, in which responders play both for themselves (myself-MS condition) and on behalf of an unknown third-party (TP condition), where they respond to unfairness without being the target of it. We find that the application of cathodal tDCS over MPFC decreases the probability of rejecting unfair offers in MS, but not in TP; conversely, the same stimulation increases the probability of rejecting fair offers in TP, but not in MS. We confirm the hypothesis that MPFC is specifically related to processing unfairness when the self is involved, and discuss possible explanations for the opposite effect of the stimulation in TP. © The Author (2014).

Manenti R.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Cotelli M.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
Behavioural Brain Research | Year: 2011

Functional neuroimaging studies have shown that younger adults tend to asymmetrically recruit specific regions of an hemisphere in an episodic memory task (Hemispheric Encoding Retrieval Asymmetry-HERA model). In older adults, this hemispheric asymmetry is generally reduced as suggested by the Hemispheric Asymmetry Reduction for OLDer Adults-HAROLD-model. Recent works suggest that while low-performing older adults do not show this reduced asymmetry, high-performing older adults counteract age-related neural decline through a plastic reorganization of cerebral networks that results in reduced functional asymmetry. However, the issue of whether high- and low-performing older adults show different degrees of asymmetry and the relevance of this process for counteracting aging have not been clarified.We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the dorsolateral prefrontal cortex (DLPFC) during encoding or retrieval of associated and non-associated word pairs. A group of healthy older adults was studied during encoding and retrieval of word pairs. The subjects were divided in two subgroups according to their experimental performance (i.e., high- and low-performing). TMS effects on retrieval differed according to the subject's subgroup. In particular, the predominance of left vs. right DLPFC effects during encoding, predicted by the HERA model, was observed only in low-performing older adults, while the asymmetry reduction predicted by the HAROLD model was selectively shown for the high-performing group. The present data confirm that older adults with higher memory performance show less prefrontal asymmetry as an efficient strategy to counteract age-related memory decline. © 2010 Elsevier B.V.

Fertonani A.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Ferrari C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
Clinical Neurophysiology | Year: 2015

Objective: The goals of this work are to report data regarding a large number of stimulation sessions and to use model analyses to explain the similarities or differences in the sensations induced by different parameters of tES application. Methods: We analysed sensation data relative to 693 different tES sessions. In particular, we studied the effects on sensations induced by different types of current, categories of polarity and frequency, different timing, levels of current density and intensity, different electrode sizes and different electrode locations (areas). Results: The application of random or fixed alternating current stimulation (i.e., tRNS and tACS) over the scalp induced less sensation compared with transcranial direct current stimulation (tDCS), regardless of the application parameters. Moreover, anodal tDCS induced more annoyance in comparison to other tES. Additionally, larger electrodes induced stronger sensations compared with smaller electrodes, and higher intensities were more strongly perceived. Timing of stimulation, montage and current density did not influence sensations perception. The analyses demonstrated that the induced sensations could be clustered on the basis of the type of somatosensory system activated. Finally and most important no adverse events were reported. Conclusion: Induced sensations are modulated by electrode size and intensity and mainly pertain to the cutaneous receptor activity of the somatosensory system. Moreover, the procedure currently used to perform placebo stimulation may not be totally effective when compared with anodal tDCS. Significance: The reported observations enrich the literature regarding the safety aspects of tES, confirming that it is a painless and safe technique. © 2015 International Federation of Clinical Neurophysiology.

Cotelli M.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Manenti R.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Zanetti O.,Irccs Centro San Giovanni Of Dio Fatebenefratelli
Maturitas | Year: 2012

Dementia is a progressive disorder that impacts several cognitive functions. However, some aspects of cognitive function are preserved until late in the disease and can therefore be the targets of specific interventions. The rehabilitation of cognitive function disorders represents an expanding area of neurological rehabilitation, and it has recently attracted growing political, social and ethical attention. Here, we review the efficacy of reminiscence therapy to improve cognitive functions and/or mood. Available studies suggest that reminiscence therapy can improve mood and some cognitive abilities. Further studies, based on larger patient samples including placebo and control conditions, should be conducted to identify the optimal conditions for such treatment protocols. © 2012 Elsevier Ireland Ltd. All rights reserved.

Pirulli C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Fertonani A.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
Brain Stimulation | Year: 2013

Background: Transcranial electric stimulation (tES) protocols are able to induce neuromodulation, offering important insights to focus and constrain theories of the relationship between brain and behavior. Previous studies have shown that different types of tES (i.e., direct current stimulation - tDCS, and random noise stimulation - tRNS) induce different facilitatory behavioral effects. However to date is not clear which is the optimal timing to apply tES in relation to the induction of robust facilitatory effects. Objective/hypothesis: The goal of this work was to investigate how different types of tES (tDCS and tRNS) can modulate behavioral performance in the healthy adult brain in relation to their timing of application. We applied tES protocols before (offline) or during (online) the execution of a visual perceptual learning (PL) task. PL is a form of implicit memory that is characterized by an improvement in sensory discrimination after repeated exposure to a particular type of stimulus and is considered a manifestation of neural plasticity. Our aim was to understand if the timing of tES is critical for the induction of differential neuromodulatory effects in the primary visual cortex (V1). Methods: We applied high-frequency tRNS, anodal tDCS and sham tDCS on V1 before or during the execution of an orientation discrimination task. The experimental design was between subjects and performance was measured in terms of d' values. Results: The ideal timing of application varied depending on the stimulation type. tRNS facilitated task performance only when it was applied during task execution, whereas anodal tDCS induced a larger facilitation if it was applied before task execution. Conclusion: The main result of this study is the finding that the timing of identical tES protocols yields opposite effects on performance. These results provide important guidelines for designing neuromodulation induction protocols and highlight the different optimal timing of the two excitatory techniques. © 2013 Elsevier Inc. All rights reserved.

Bortoletto M.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Veniero D.,University of Glasgow | Thut G.,University of Glasgow | Miniussi C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Miniussi C.,University of Brescia
Neuroscience and Biobehavioral Reviews | Year: 2015

Recent developments in neuroscience have emphasised the importance of integrated distributed networks of brain areas for successful cognitive functioning. Our current understanding is that the brain has a modular organisation in which segregated networks supporting specialised processing are linked through a few long-range connections, ensuring processing integration. Although such architecture is structurally stable, it appears to be flexible in its functioning, enabling long-range connections to regulate the information flow and facilitate communication among the relevant modules, depending on the contingent cognitive demands. Here we show how insights brought by the coregistration of transcranial magnetic stimulation and electroencephalography (TMS-EEG) integrate and support recent models of functional brain architecture. Moreover, we will highlight the types of data that can be obtained through TMS-EEG, such as the timing of signal propagation, the excitatory/inhibitory nature of connections and causality. Last, we will discuss recent emerging applications of TMS-EEG in the study of brain disorders. © 2014 The Authors.

Bagattini C.,Irccs Centro San Giovanni Of Dio Fatebenefratelli | Mazzi C.,University of Verona | Savazzi S.,University of Verona
Neuropsychologia | Year: 2015

Transcranial magnetic stimulation (TMS) of the occipital cortex is known to induce visual sensations, i.e. phosphenes, which appear as flashes of light in the absence of an external stimulus. Recent studies have shown that TMS can produce phosphenes also when the intraparietal sulcus (IPS) is stimulated. The main question addressed in this paper is whether parietal phosphenes are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Electroencephalographic (EEG) signals were recorded while stimulating left occipital or parietal cortices inducing phosphene perception in healthy participants and in a hemianopic patient who suffered from complete destruction of the early visual cortex of the left hemisphere. Results in healthy participants showed that the onset of phosphene perception induced by occipital TMS correlated with differential cortical activity in temporal sites while the onset of phosphene perception induced by parietal TMS correlated with differential cortical activity in the stimulated parietal site. Moreover, IPS-TMS of the lesioned hemisphere of the hemianopic patient with a complete lesion to V1 showed again that the onset of phosphene perception correlated with differential cortical activity in the stimulated parietal site. The present data seem thus to suggest that temporal and parietal cortices can serve as different local early gatekeepers of perceptual awareness and that activity in the occipital cortex, although being relevant for perception in general, is not part of the neural bases of the perceptual awareness of phosphenes. © 2015 Elsevier Ltd.

Loading Irccs Centro San Giovanni Of Dio Fatebenefratelli collaborators
Loading Irccs Centro San Giovanni Of Dio Fatebenefratelli collaborators