IRCCS Centro Neurolesi Bonino Pulejo

Messina, Italy

IRCCS Centro Neurolesi Bonino Pulejo

Messina, Italy
SEARCH FILTERS
Time filter
Source Type

Quaranta D.,Catholic University | Marra C.,Catholic University | Bramanti P.,IRCCS Centro Neurolesi Bonino Pulejo | Rossini P.M.,Catholic University
Neuroscience | Year: 2016

Functional brain abnormalities including memory loss are found to be associated with pathological changes in connectivity and network neural structures. Alzheimer's disease (AD) interferes with memory formation from the molecular level, to synaptic functions and neural networks organization. Here, we determined whether brain connectivity of resting-state networks correlate with memory in patients affected by AD and in subjects with mild cognitive impairment (MCI). One hundred and forty-four subjects were recruited: 70 AD (MMSE Mini Mental State Evaluation 21.4), 50 MCI (MMSE 25.2) and 24 healthy subjects (MMSE 29.8). Undirected and weighted cortical brain network was built to evaluate graph core measures to obtain Small World parameters. eLORETA lagged linear connectivity as extracted by electroencephalogram (EEG) signals was used to weight the network. A high statistical correlation between Small World and memory performance was found. Namely, higher Small World characteristic in EEG gamma frequency band during the resting state, better performance in short-term memory as evaluated by the digit span tests. Such Small World pattern might represent a biomarker of working memory impairment in older people both in physiological and pathological conditions. © 2015 IBRO.


Bramanti P.,IRCCS Centro Neurolesi Bonino Pulejo | Rossini P.M.,Catholic University
Neuroscience | Year: 2015

Aim of this study was to verify whether the topological organization of human brain functional networks is different for males and females in resting state EEGs. Undirected and weighted brain networks were computed by eLORETA lagged linear connectivity in 130 subjects (59 males and 71 females) within each hemisphere and in four resting state networks (Attentional Network (AN), Frontal Network (FN), Sensorimotor Network (SN), Default Mode Network (DMN)). We found that small-world (SW) architecture in the left hemisphere Frontal network presented differences in both delta and alpha band, in particular lower values in delta and higher in alpha 2 in males respect to females while in the right hemisphere differences were found in lower values of SW in males respect to females in gamma Attentional, delta Sensorimotor and delta and gamma DMNs. Gender small-worldness differences in some of resting state networks indicated that there are specific brain differences in the EEG rhythms when the brain is in the resting-state condition. These specific regions could be considered related to the functions of behavior and cognition and should be taken into account both for research on healthy and brain diseased subjects. © 2015 IBRO.


Esposito E.,Messina University | Cuzzocrea S.,Messina University | Cuzzocrea S.,IRCCS Centro Neurolesi Bonino Pulejo
Trends in Pharmacological Sciences | Year: 2011

Spinal cord injury (SCI) has a significant impact on the quality and expectancy of life. It also carries a heavy economic burden, with considerable costs associated with primary care and loss of income. The normal architecture of the spinal cord is radically disrupted by injury. After the initial insult, structure and function are lost through active secondary processes that involve reactive astrocytes, glial progenitors, microglia, macrophages, fibroblasts and Schwann cells. These cells produce chemokines and cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, which mediate the recruitment of inflammatory cells to the injury site. Targeting of these cytokines represents a potential strategy to reduce the secondary damage in SCI. In this review, we focus on several emerging strategies to neutralize TNF-α, including antibodies, soluble receptors, recombinant TNF-binding proteins, TNF receptor fusion proteins, and non-specific agents (e.g. thalidomide) and discuss their potential as therapy for SCI. © 2010 Elsevier Ltd.


Sbarbati A.,University of Verona | Bramanti P.,IRCCS Centro Neurolesi Bonino Pulejo | Benati D.,University of Verona | Merigo F.,University of Verona
Progress in Neurobiology | Year: 2010

The diffuse chemosensory system (DCS) is an anatomical structure composed of solitary chemosensory cells (SCCs, also called solitary chemoreceptor cells), which have analogies with taste cells but are not aggregated in buds. The concept of DCS has been advanced, after the discovery that cells similar to gustatory elements are present in several organs. The elements forming the DCS share common morphological and biochemical characteristics with the taste cells located in taste buds of the oro-pharyngeal cavity but they are localized in internal organs. In particular, they may express molecules of the chemoreceptorial cascade (e.g. trans-membrane taste receptors, the G-protein alpha-gustducin, PLCβ2, TRPM5). This article will focus on the mammalian DCS in apparatuses of endodermic origin (i.e. digestive and respiratory systems), which is composed of an enormous number of sensory elements and presents a multiplicity of morphological aspects. Recent research has provided an adequate description of these elements, but the functional role for the DCS in these apparatuses is unknown. The initial findings led to the definition of a DCS structured like an iceberg, with a mysterious " submerged" portion localized in the distal part of endodermic apparatuses. Recent work has focussed on the discovery of this submerged portion, which now appears less puzzling. However, the functional roles of the different cytotypes belonging to the DCS are not well known. Recent studies linked chemosensation of the intraluminal content to local control of absorptive and secretory (exocrine and endocrine) processes. Control of the microbial population and detection of irritants seem to be other possible functions of the DCS. In the light of these new findings, the DCS might be thought to be involved in a wide range of diseases of both the respiratory (e.g. asthma, chronic obstructive pulmonary disease, cystic fibrosis) and digestive apparatuses (absorptive or secretive diseases, dysmicrobism), as well as in systemic diseases (e.g. obesity, diabetes). A description of the functional roles of the DCS might be a first step toward the discovery of therapeutic approaches which target chemosensory mechanisms. © 2010 Elsevier Ltd.


Fabene P.F.,University of Verona | Bramanti P.,IRCCS Centro Neurolesi Bonino Pulejo | Constantin G.,University of Verona
Journal of Neuroimmunology | Year: 2010

Epilepsy has been considered mainly a neuronal disease, without much attention to non-neuronal cells. In recent years growing evidence suggest that astrocytes, microglia, blood leukocytes and blood-brain barrier breakdown are involved in the pathogenesis of epilepsy. In particular, leukocyte-endothelium interactions and eventually subsequent leukocyte recruitment in the brain parenchyma seem to represent key players in the epileptogenic cascade. Chemokines are chemotactic factors controlling leukocyte migration under physiological and pathological conditions. In the light of recent advances in our understanding of the role of inflammation mechanisms in the pathogenesis of epilepsy, pro-inflammatory chemokines may play a critical role in epileptogenesis. © 2010 Elsevier B.V.


Esposito E.,Messina University | Cuzzocrea S.,Messina University | Cuzzocrea S.,IRCCS Centro Neurolesi Bonino Pulejo
Current Neuropharmacology | Year: 2010

Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury). © 2010 Bentham Science Publishers Ltd.


Esposito E.,IRCCS Centro Neurolesi Bonino Pulejo | Cuzzocrea S.,IRCCS Centro Neurolesi Bonino Pulejo | Cuzzocrea S.,Messina University
Current Medicinal Chemistry | Year: 2010

The development of potential neuroprotective therapies for neurodegenerative diseases (Parkinson's and Alzheimer's Disease) must be based on understanding their molecular and biochemical pathogenesis. Many potential pathways of neuronal cell death have been implicated in a mouse model of neurodegenerative disease, including excitotoxicity, toxicity from reactive oxygen species (superoxide anion, nitric oxide, hydroxyl radical), apoptosis (caspase-dependent and -independent pathways), necrosis and glial injury. Some agents that act on these pathways may be available for protecting the brain against chronic neurodegenerative conditions like Parkinson's and Alzheimer's disease. Drugs currently used to treat neurological disease and injuries provide temporary relief of symptoms but do not stop or slow the underlying neurodegenerative process. Restorative therapies for Parkinson's Disease are currently focused on cell replacement and administration of growth factors and small-molecule neurotrophic agents. The new experimental drugs, by contrast, target the common, underlying cause of destructive process of brain cell death. For example, p53 inhibitors attack a key protein involved in nerve cell death and represent a new strategy for preserving brain function following sudden injury or chronic disease. Analogues of pifithrin-alpha (PFT), which was shown in previous studies to inhibit p53, were designed, synthesized and tested to see whether they would work against cultured brain cells and animal models of neurodegenerative disease. Moreover, several agents based on the predominant anti-amyloid strategy, targeting amyloid-beta (Aβ) peptide, which aggregates in the plaques that are a hallmark of Alzheimer's disease, would affect disease progression. Researchers are already making great strides in developing a vaccine for this progressive brain disorder. Immunization could offer a way to blunt or even prevent the deadly, memory-robbing disease. Here we review many of potential neuroprotective therapies, and strategies that might be suited to the development of innovative approaches that prevent degeneration and restore function in Parkinson's disease. © 2010 Bentham Science Publishers Ltd.


Trifiro G.,Erasmus Medical Center | Trifiro G.,IRCCS Centro Neurolesi Bonino Pulejo
Current Infectious Disease Reports | Year: 2011

Antipsychotics are generally distinguished as atypical and typical agents, which are indicated in the treatment of acute and chronic psychoses and other psychiatric disorders. In April 2005, the US Food and Drug Administration issued a warning about the increased risk of all-cause mortality associated with atypical antipsychotic use in elderly patients with dementia. Pneumonia was one of the most frequently reported causes of death. The same warning was extended to typical antipsychotics in June 2008. In recent years, several observational studies have further explored the association between antipsychotic use, mainly in elderly patients, and the risk of fatal/nonfatal community-acquired pneumonia. The aim of this review is to revise and discuss the scientific evidence and biologic explanations for the association between atypical and typical antipsychotic use and pneumonia occurrence. Some general recommendations to clinicians are proposed to prevent the risk of pneumonia in patients requiring antipsychotic treatment. © 2011 The Author(s).


The present invention relates to a phantom for periodical measurements of parameters allowing to ensure that performance of equipment for computed tomography and/or magnetic resonance tomography are compliant to established acceptability criteria, that is performance are constant in time. The main characteristic of such phantom is that the same phantom may be used for measurements of different physical parameters and for different machines, even of different type, such as machines for CT and/or MRT. The universal phantom described is made of a rectangular parallelepiped in PMMA made of different sections that may be filled with an appropriate liquid and/or contain different inserts according to the measurements to be performed, such as for example noise and uniformity, CT number linearity, high contrast spatial resolution, low contrast spatial resolution, layer thickness, etc.


Patent
Irccs Centro Neurolesi Bonino Pulejo | Date: 2010-07-07

A signal acquisition and conditioning system, specifically for bioelectric signals, comprising an acquisition and pre-conditioning device 2 comprising a chip adapted to process the input bioelectric signals in a differential manner, with a low use of additional circuitry. The system further comprises means for generating a sinusoidal-wave clock signal and means for converting said sinusoidal wave into a clock square-wave.

Loading IRCCS Centro Neurolesi Bonino Pulejo collaborators
Loading IRCCS Centro Neurolesi Bonino Pulejo collaborators