Time filter

Source Type

Bernardo M.E.,IRCCS Bambino Gesu Children Hospital | Fibbe W.E.,Leiden University
Cell Stem Cell

In addition to their stem/progenitor properties, mesenchymal stromal cells (MSCs) possess broad immunoregulatory properties that are being investigated for potential clinical application in treating immune-based disorders. An informed view of the scope of this clinical potential will require a clear understanding of the dynamic interplay between MSCs and the innate and adaptive immune systems. In this Review, we outline current insights into the ways in which MSCs sense and control inflammation, highlighting the central role of macrophage polarization. We also draw attention to functional differences seen between vivo and in vitro contexts and between species. Finally, we discuss progress toward clinical application of MSCs, focusing on GvHD as a case study. © 2013 Elsevier Inc. Source

Hampson L.V.,Lancaster University | Whitehead J.,Lancaster University | Eleftheriou D.,University College London | Tudur-Smith C.,University of Liverpool | And 18 more authors.

Objectives: Definitive sample sizes for clinical trials in rare diseases are usually infeasible. Bayesian methodology can be used to maximise what is learnt from clinical trials in these circumstances. We elicited expert prior opinion for a future Bayesian randomised controlled trial for a rare inflammatory paediatric disease, polyarteritis nodosa (MYPAN, Mycophenolate mofetil for polyarteritis nodosa). Methods: A Bayesian prior elicitation meeting was convened. Opinion was sought on the probability that a patient in the MYPAN trial treated with cyclophosphamide would achieve disease remission within 6-months, and on the relative efficacies of mycophenolate mofetil and cyclophosphamide. Expert opinion was combined with previously unseen data from a recently completed randomised controlled trial in ANCA associated vasculitis. Results: A pan-European group of fifteen experts participated in the elicitation meeting. Consensus expert prior opinion was that the most likely rates of disease remission within 6 months on cyclophosphamide or mycophenolate mofetil were 74% and 71%, respectively. This prior opinion will now be taken forward and will be modified to formulate a Bayesian posterior opinion once the MYPAN trial data from 40 patients randomised 1:1 to either CYC or MMF become available. Conclusions: We suggest that the methodological template we propose could be applied to trial design for other rare diseases. © 2015 Hampson et al. Source

Rossi F.,The Second University of Naples | Bernardo M.E.,IRCCS Bambino Gesu Children Hospital | Bellini G.,The Second University of Naples | Luongo L.,The Second University of Naples | And 17 more authors.

Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians. Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes. In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells. We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources. © 2013 Rossi et al. Source

Rossi F.,The Second University of Naples | Bellini G.,The Second University of Naples | Tortora C.,The Second University of Naples | Bernardo M.E.,IRCCS Bambino Gesu Children Hospital | And 7 more authors.
Pharmacological Research

Abstract In the current study, we have investigated the effect of CB2 and TRPV1 receptor ligands on in vitro osteoblasts from bone marrow of human healthy donors. A pivotal role for the endocannabinoid/endovanilloid system in bone metabolism has been highlighted. We have demonstrated a functional cross-talk between CB2 and TRPV1 in human osteoclasts, suggesting these receptors as new pharmacological target for the treatment of bone resorption disease as osteoporosis. Moreover, we have shown the presence of these receptors on human mesenchimal stem cells, hMSCs. Osteoblasts are mononucleated cells originated from hMSCs by the essential transcription factor runt-related transcription factor 2 and involved in bone formation via the synthesis and release of macrophage colony-stimulating factor, receptor activator of nuclear factor kappa-B ligand and osteoprotegerin. For the first time, we show that CB2 and TRPV1 receptors are both expressed on human osteoblasts together with enzymes synthesizing and degrading endocannabinoids/endovanilloids, and oppositely modulate human osteoblast activity in culture in a way that the CB2 receptor stimulation improves the osteogenesis whereas TRPV1 receptor stimulation inhibits it. © 2015 Published by Elsevier Ltd. Source

Discover hidden collaborations