Entity

Time filter

Source Type


Di Nicolantonio F.,University of Turin | Di Nicolantonio F.,IRCC Institute for Cancer Research and Treatment at Candiolo | Bardelli A.,University of Turin | Bardelli A.,IRCC Institute for Cancer Research and Treatment at Candiolo | Bardelli A.,FIRC Institute of Molecular Oncology IFOM
Clinical Cancer Research | Year: 2013

The development of effective therapies for colorectal cancer depends on the ability of preclinical models to faithfully recapitulate the molecular and biologic behavior of human tumors. This study reports on the characterization of colorectal genetically engineered mouse models and their derivative cell lines carrying wild-type or oncogenic Kras with concomitant Apc and p53 loss. ©2013 AACR. Source


Barrow T.M.,Harvard University | Barrow T.M.,Albert Ludwigs University of Freiburg | Barault L.,Harvard University | Barault L.,IRCC Institute for Cancer Research and Treatment at Candiolo | And 7 more authors.
International Journal of Cancer | Year: 2015

Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer because they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n = 38) and benign breast disease (n = 30) were compared with those from healthy individuals (n = 36), matched with the cancer patients by age at diagnosis, ethnicity, body mass index, menopausal status and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8% and SNRPN/SNURF ICR in 4%. Variation in methylation was significantly greater in breast tissue from cancer patients compared with that in healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher's exact test, p = 0.02) and progesterone-A (p = 0.02) receptor status. Aberrant events and increased variation in imprinted gene DNA methylation, therefore, seem to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression. © 2015 UICC. Source


Zecchin D.,IRCC Institute for Cancer Research and Treatment at Candiolo | Boscaro V.,University of Turin | Medico E.,IRCC Institute for Cancer Research and Treatment at Candiolo | Barault L.,IRCC Institute for Cancer Research and Treatment at Candiolo | And 10 more authors.
Molecular Cancer Therapeutics | Year: 2013

A critical step toward defining tailored therapy in patients with cancer is the identification of genetic interactions that may impair-or boost-the efficacy of selected therapeutic approaches. Cell models able to recapitulate combinations of genetic aberrations are important to find drug-genotype interactions poorly affected by the heterogeneous genetics of human tumors. In order to identify novel pharmacogenomic relationships, we employed an isogenic cell panel that reconstructs cancer genetic scenarios. We screened a library of 43 compounds in human hTERT-HME1 epithelial cells in which PTEN or RB1 were silenced in combination with the targeted knockin of cancer-associated mutations in EGFR, KRAS, BRAF, or PIK3CA oncogenes. Statistical analysis and clustering algorithms were applied to display similar drug response profiles and mutation-specific patterns of activity. From the screen, we discovered that proteasome inhibitors show selectivity toward BRAF V600E-mutant cells, irrespective of PTEN or RB1 expression. Preferential targeting of BRAF-mutant cells by proteasome inhibitors was corroborated in a second BRAF V600E isogenic model, as well as in a panel of colorectal cancer cell lines by the use of the proteasome inhibitor carfilzomib. Notably, carfilzomib also showed striking in vivo activity in a BRAF-mutant human colorectal cancer xenograft model. Vulnerability to proteasome inhibitors is dependent on persistent BRAF signaling, because BRAF V600E blockade by PLX4720 reversed sensitivity to carfilzomib in BRAF-mutant colorectal cancer cells. Our findings indicated that proteasome inhibition might represent a valuable targeting strategy in BRAF V600E-mutant colorectal tumors. © 2013 AACR. Source


Bardelli A.,University of Turin | Bardelli A.,IRCC Institute for Cancer Research and Treatment at Candiolo | Bardelli A.,FIRC Institute of Molecular Oncology IFOM | Corso S.,University of Turin | And 39 more authors.
Cancer Discovery | Year: 2013

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification. SIGNIFICANCE: Amplification of the MET proto-oncogene is responsible for de novo and acquired resistance to anti-EGFR therapy in a subset of colorectal cancers. As multiple anti-MET therapeutic strategies are available, these findings offer immediate novel opportunities to design clinical studies. © 2013 American Association for Cancer Research. Source

Discover hidden collaborations