IRC

Netherlands
Netherlands
SEARCH FILTERS
Time filter
Source Type

News Article | May 10, 2017
Site: www.businesswire.com

麻塞諸塞州劍橋和日本大阪--(BUSINESS WIRE)--(美國商業資訊) -- 武田藥品工業株式會社(TSE: 4502)今天宣布,《臨床腫瘤學雜誌》發表樞紐性2期ALTA (ALK in Lung Cancer Trial of AP26113)臨床試驗的資料(DOI: 10.1200/JCO.2016.71.5904 Journal of Clinical Oncology),該試驗評估ALUNBRIG™ (brigatinib)用於crizotinib難治的間變性淋巴瘤激酶陽性(ALK+)局部進展或轉移性非小細胞肺癌 (NSCLC)患者。該研究發現,對於7天導入期服用brigatinib 90毫克每日一次、然後服用brigatinib 180毫克每日一次的患者,獨立評審委員會(IRC)評價的經證實的客觀緩解率(ORR)為53%。此外,67%的腦轉移可測量的患者接受該劑量方案後,獲得經證實的顱內客觀緩解。武田的ALUNBRIG最近獲得美國食品藥品管理局(FDA)的加速核准,用於治療crizotinib用藥期間進展或無法耐受crizotinib的ALK+轉移性NSCLC。該適應症獲得加速核准的依據是腫瘤緩解率和緩解持續時間。該適應症的持續核准有待一項證實性試驗對臨床效益進行驗證和描述。


CAMBRIDGE (Massachusetts) und OSAKA (Japan)--(BUSINESS WIRE)--Takeda Pharmaceutical Company Limited (TSE: 4502) gab heute bekannt, dass die Daten der zulassungsrelevanten klinischen Phase-II-Studie ALTA (ALK in Lung Cancer Trial of AP26113) zur Evaluiering von ALUNBRIG™ (Brigatinib) bei Patienten mit Crizotinib-therapieresistentem ALK-positivem, lokal fortgeschrittenem oder metastasiertem nicht-kleinzelligem Lungenkrebs (NSCLC) im Journal of Clinical Oncology (DOI: 10.1200/JCO.2016.71.5904 Journal of Clinical Oncology) veröffentlicht wurden. Die Studie zeigte, dass für Patienten bei einmal täglichen Gaben von Brigatinib von 180 mg nach einer siebentägigen Einführungsphase mit Gaben von einmal täglich 90 mg, die von dem Independent Review Committee (IRC) bestätigte objektive Ansprechrate bei 53% lag. Darüber hinaus zeigten 67% der Patienten mit nachweisbaren Gehirn-Metastasen bei dieser Dosierung ein nachweisbares intrakranielles objektives Ansprechen. Takeda erhielt in jüngster Vergangenheit die Bestätigung von der US-amerikanischen Zulassungsbehörde FDA für ein beschleunigtes Zulassungsverfahren für die Behandlung von Patienten mit ALK-positivem metastasiertem nicht-kleinzelligem Lungenkrebs, die von Krankheitsprogression unter Crizotinib-Therapie oder Crizotinib-Unverträglichkeit betroffen waren. Die Zulassung für diese Indikation erfolgt im Rahmen eines beschleunigten Zulassungsverfahrens aufgrund der Tumoransprechrate und der Dauer des Ansprechens. Eine dauerhafte Zulassung für diese Indikation kann von der Bestätigung und Beschreibung des klinischen Nutzens im Rahmen einer konfirmatorischen Studie abhängen. „Aufgrund der Tatsache, dass die Hälfte der mit Crizotinib behandelten ALK-positiven NSCLC-Patienten innerhalb eines Jahres ein Fortschreiten der Erkrankung verzeichnet, wobei sich der Krebs in vielen Fällen im Gehirn ausbreitet, ist es von großer Bedeutung, über neue wirksame Therapien zu verfügen, die in der Lage sind, diese Resistenzmechanismen zu aktivieren”, so der präsentierende Autor Dong-Wan Kim, M.D., Ph.D., Direktor des Cancer Clinical Trials Center am Seoul National University Hospital in Südkorea. „Die Ergebnisse der ALTA-Studie bieten den Klinikern wichtige Informationen zur Wirksamkeit und Sicherheit von Brigatinib bei Patienten, die ein Fortschreiten ihrer Erkrankung bei Gaben von Crizotinib verzeichneten, und belegen die hohe Wirksamkeit von Brigatinib in diesem Rahmen, sowohl systemisch als auch im Gehirn.” Wie in dem Journal of Clinical Oncologydargelegt, führte die Studie zu folgenden Ergebnissen: Clinical Investigator Assessed Efficacy & Safety Data vom 29. Februar 2016 mit letztem Scan-Datum für IRC-Beurteilungen am 16. Mai 2016 Die Daten der ALTA-Studie wurden erstmals auf der Jahrestagung 2016 der Amerikanischen Gesellschaft für Klinische Onkologie (ASCO) in Chicago im US-Bundesstaat Illinois präsentiert und im Rahmen der International Association for the Study of Lung Cancer (IASLC) 17th World Conference on Lung Cancer (WCLC) in Wien aktualisiert. WARNHINWEISE UND VORSICHTSMASSNAHMEN Interstitielle Lungenerkrankung (ILD)/Pneumonitis: Schwere, lebensbedrohliche und tödliche Lungennebenwirkungen im Sinne einer interstitiellen Lungenerkrankung (ILD)/Pneumonitis sind unter der Einnahme von ALUNBRIG aufgetreten. In der Studie ALTA (ALTA) trat eine ILD/Pneumonitis bei 3,7% der Patienten in der 90-mg-Gruppe (90 mg einmal täglich) und 9,1% der Patienten in der 90→180-mg-Gruppe (180 mg einmal täglich mit einer 7-tägigen Lead-in-Phase mit 90 mg einmal täglich) auf. Die Nebenwirkungen im Sinne einer möglichen ILD/Pneumonitis traten früh (innerhalb von 9 Tagen nach Einleitung der Behandlung mit ALUNBRIG; medianer Beginn: 2 Tage) bei 6,4% der Patienten auf, wobei Nebenwirkungen 3. und 4. Grades bei 2,7% beobachtet wurden. Patienten sind hinsichtlich des Neuauftretens oder der Verschlechterung von Atembeschwerden (z.B. Atemnot, Husten usw.) zu überwachen, insbesondere während der ersten Woche nach Einleitung der Behandlung mit ALUNBRIG. Die Behandlung mit ALUNBRIG ist bei allen Patienten mit neu aufgetretenen oder sich verschlechternden Atembeschwerden auszusetzen und eine Abklärung hinsichtlich ILD/Pneumonitis oder anderer Ursachen der Atembeschwerden (z.B. Lungenembolie, Tumorprogression und infektiöse Pneumonie) muss umgehend erfolgen. Bei ILD/Pneumonitis 1. oder 2. Grades ist entweder die Behandlung mit ALUNBRIG mit reduzierter Dosis nach Erholung bis zum Ausgangszustand wiederaufnehmen oder ALUNBRIG dauerhaft abzusetzen. Bei ILD/Pneumonitis 3. oder 4. Grades oder Rezidiv der ILD/Pneumonitis 1. oder 2. Grades ist ALUNBRIG dauerhaft abzusetzen. Hypertonie: Im Rahmen der ALTA-Studie wurde über Hypertonie bei 11% der Patienten in der 90-mg-Gruppe, die ALUNBRIG erhielten, und 21% der Patienten in der 90→180-mg-Gruppe berichtet. Hypertonie 3. Grades trat insgesamt bei 5,9% der Patienten auf. Vor Beginn der Behandlung mit ALUNBRIG ist eine Kontrolle des Blutdrucks erforderlich. Während der Behandlung mit ALUNBRIG ist der Blutdruck nach 2 Wochen und danach mindestens einmal im Monat zu überwachen. Beim Auftreten einer Hypertonie 3. Grades trotz optimaler antihypertensiver Therapie ist die Behandlung mit ALUNBRIG auszusetzen. Bei Normalisierung des Blutdrucks oder Verbesserung auf Schweregrad 1 ist die Behandlung mit ALUNBRIG mit einer geringeren Dosis wieder aufzunehmen. Bei Hypertonie 4. Grades oder Wiederauftreten einer Hypertonie 3. Grades ist das dauerhafte Absetzen der Behandlung mit ALUNBRIG in Erwägung zu ziehen. Bei Verabreichung von ALUNBRIG in Kombination mit Antihypertensiva, die eine Bradykardie verursachen, ist Vorsicht angezeigt. Bradykardie: Bei der Verabreichung von ALUNBRIG kann eine Bradykardie auftreten. In der ALTA-Studie fanden sich Herzfrequenzen von weniger als 50 Schlägen pro Minute bei 5,7% der Patienten in der 90-mg-Gruppe und bei 7,6% der Patienten in der 90→180-mg-Gruppe. Eine Bradykardie 2. Grades trat bei einem Patienten (0,9 %) in der 90-mg-Gruppe auf. Während der Behandlung mit ALUNBRIG ist die Herzfrequenz und der Blutdruck zu überwachen. Lässt sich die gleichzeitige Behandlung mit einem Medikament, das bekanntermaßen eine Bradykardie verursachen kann, nicht vermeiden, sind die Patienten engmaschiger zu überwachen. Bei symptomatischer Bradykardie ist die Behandlung mit ALUNBRIG auszusetzen und die Begleitmedikation auf Wirkstoffe zu überprüfen, die bekanntermaßen eine Bradykardie verursachen können. Wenn eine Begleitmedikation, die bekanntermaßen eine Bradykardie verursachen kann, erkannt und abgesetzt oder in der Dosierung angepasst wurde, ist die Behandlung mit ALUNBRIG nach Abklingen der symptomatischen Bradykardie in derselben Dosierung wieder aufzunehmen; andernfalls ist die ALUNBRIG-Dosis nach Abklingen der symptomatischen Bradykardie zu reduzieren. Bei lebensbedrohlicher Bradykardie ist ALUNBRIG abzusetzen, wenn keine mitverantwortliche Begleitmedikation gefunden wird. Sehstörungen: Im Rahmen der ALTA-Studie wurden Nebenwirkungen, die zu Sehstörungen, darunter Verschwommensehen, Doppeltsehen und herabgesetzte Sehschärfe führen, bei 7,3% der mit ALUNBRIG behandelten Patienten in der 90-mg-Gruppe und 10% der Patienten in der 90→180-mg-Gruppe berichtet. Ein Makulaödem 3. Grades und Katarakt traten bei jeweils einem Patient in der 90→180-mg-Gruppe auf. Patienten sind darauf hinzuweisen, ihre Sehbeschwerden zu berichten. Bei Auftreten neuer oder Verschlechterung bestehender Sehbeschwerden 2. oder höheren Grades ist die Behandlung mit ALUNBRIG auszusetzen und ein augenärztliches Konsil einzuholen. Bei Abklingen von Sehbeschwerden 2. oder 3. Grades auf Grad 1 oder Ausgangswert ist die Behandlung mit ALUNBRIG in einer geringeren Dosis wieder aufzunehmen. Bei Auftreten von Sehstörungen 4. Grades ist die Behandlung mit ALUNBRIG abzubrechen. Creatin-Phosphokinase (CPK)-Erhöhung: Im Rahmen der ALTA-Studie trat bei 27% der Patienten mit ALUNBRIG-Behandlung in der 90-mg-Gruppe und 48% der Patienten in der 90→180-mg-Gruppe eine Erhöhung der Creatinphosphokinase (CPK) auf. Die Inzidenz einer CPK-Erhöhung 3. oder 4. Grades betrug 2,8 Prozent in der 90-mg-Gruppe und 12 Prozent in der 90→180-mg-Gruppe. Eine Dosisreduzierung wegen CPK-Erhöhung erfolgte bei 1,8% der Patienten in der 90-mg-Gruppe und bei 4,5% in der 90→180-mg-Gruppe. Patienten sind darauf hinzuweisen, unerklärliche Muskelschmerzen, -empfindlichkeit oder -schwäche zu berichten. Während der ALUNBRIG-Behandlung ist der CPK-Spiegel zu überwachen. Die Behandlung mit ALUNBRIG ist bei CPK-Erhöhungen 3. oder 4. Grades auszusetzen. Bei Normalisierung oder Absinken des CPK-Spiegels auf Grad 1 oder Ausgangswert ist die Behandlung mit ALUNBRIG mit derselben oder einer reduzierten Dosis wieder aufzunehmen. Erhöhung der Pankreasenzyme: In der ALTA-Studie fand sich eine Amylase-Erhöhung bei 27% der Patienten in der 90-mg-Gruppe und bei 39% der Patienten in der 90→180-mg-Gruppe. Lipase-Erhöhungen traten bei 21 Prozent der Patienten in der 90-mg-Gruppe und 45% der Patienten in der 90→180-mg-Gruppe auf. Amylase-Erhöhungen 3. oder 4. Grades fanden sich bei 3,7% der Patienten in der 90-mg-Gruppe und bei 2,7% der Patienten in der 90→180-mg-Gruppe. Lipase-Erhöhungen 3. oder 4. Grades traten bei 4,6% der Patienten in der 90-mg-Gruppe und bei 5,5% der Patienten in der 90→180-mg-Gruppe auf. Während der Behandlung mit ALUNBRIG sind die Lipase- und Amylase-Werte zu überwachen. Die Behandlung mit ALUNBRIG ist bei Pankreasenzymerhöhung 3. oder 4. Grades auszusetzen. Bei Normalisierung oder Absinken auf Grad 1 oder Ausgangswert ist die Behandlung mit ALUNBRIG mit derselben oder einer reduzierten Dosis wieder aufzunehmen. NEBENWIRKUNGEN Schwere Nebenwirkungen traten bei 38% der Patienten in der 90-mg-Gruppe und 40% der Patienten in der 90→180-mg-Gruppe auf. Die häufigsten schweren Nebenwirkungen waren Pneumonie (5,5% insgesamt, 3,7% in der 90-mg-Gruppe und 7,3% in der 90→180-mg-Gruppe) und ILD/Pneumonitis (4,6% insgesamt, 1,8% in der 90-mg-Gruppe und 7,3% in der 90→180-mg-Gruppe). Tödliche Nebenwirkungen traten bei 3,7% der Patienten auf und umfassten Pneumonie (2 Patienten), plötzlicher Tod, Atemnot, respiratorische Insuffizienz, Lungenembolie, bakterielle Meningitis und Urosepsis (jeweils 1 Patient). Ältere Patienten: In die klinischen Studien zu ALUNBRIG wurden nicht genügend Patienten im Alter von mindestens 65 Jahren aufgenommen, um einen Unterschied in deren Ansprechen im Vergleich zu jüngeren Patienten beurteilen zu können. Von den 222 Patienten in der ALTA-Studie waren 19,4% in der Altersgruppe 65-74 Jahre und 4,1% waren mindestens 75 Jahre alt. Es wurden keine klinisch relevanten Unterschiede hinsichtlich der Sicherheit oder Wirksamkeit zwischen Patienten ≥65 Jahre und jüngeren Patienten festgestellt. Über die Takeda Pharmaceutical Company Takeda Pharmaceutical Company Limited ist ein global tätiges, forschungs- und entwicklungsorientiertes Pharmaunternehmen, das sich für bessere Gesundheit und eine bessere Zukunft für Patienten einsetzt, indem es wissenschaftliche Erkenntnisse in lebensverändernde Medikamente umwandelt. Takeda konzentriert seine Forschungsbemühungen auf Onkologie, Gastroenterologie, Impfstoffe und mit dem Zentralnervensystem zusammenhängende Therapiebereiche. Takeda führt sowohl intern als auch über Partner Forschungs- und Entwicklungsaufgaben aus, um dadurch bei Innovationen an vorderster Front zu bleiben. Neue innovative Produkte, insbesondere in der Onkologie und Gastroenterologie, sowie seine Präsenz auf Wachstumsmärkten sind der Grund für das Wachstum von Takeda. Mehr als 30.000 Mitarbeiter setzen sich bei Takeda für die Verbesserung der Lebensqualität von Patienten ein und arbeiten in über 70 Ländern mit Partnern im Gesundheitswesen zusammen. Weitere Informationen finden Sie unter http://www.takeda.com/news.


News Article | May 12, 2017
Site: www.businesswire.com

米マサチューセッツ州ケンブリッジ & 大阪--(BUSINESS WIRE)--(ビジネスワイヤ) -- 武田薬品工業株式会社(TSE: 4502)は本日、クリゾチニブ抵抗性で未分化リンパ腫キナーゼ陽性(ALK+)の局所進行性/転移性非小細胞肺がん(NSCLC)患者でALUNBRIG™(ブリガチニブ)を評価するピボタル第2相ALTA(ALK in Lung Cancer Trial of AP26113/肺がんでALK阻害剤AP26113を検討する試験)臨床試験のデータが、ジャーナル・オブ・クリニカル・オンコロジー(DOI: 10.1200/JCO.2016.71.5904 Journal of Clinical Oncology)に掲載されたと発表しました。試験では、7日間のリードイン期間にブリガチニブ90 mgの1日1回投与に続いて、同薬180 mgの1日1回投与を受けた患者の場合、独立審査委員会(IRC)の評価で確定した客観的奏功率(ORR)が53パーセントであることが判明しました。また判定可能な脳転移を持ち、同用量のレジメンによる投与を受けた患者の67パーセントが確定した頭蓋内客観的奏功を達成しました。武田薬品は最近、クリゾチニブ投与中に進行したかクリゾチニブ抵抗性のALK陽性転移性NSCLC患者の治療薬として、米食品医薬品局(FDA)よりALUNBRIGの迅速承認を取得しました。本適応は、腫瘍奏功率および奏功期間に基づき、迅速承認制度により承認されました。本適応の承認継続は、検証的試験における臨床的ベネフィットの検証と説明が条件となります。


CAMBRIDGE, Mass. y OSAKA, Japón--(BUSINESS WIRE)--Takeda Pharmaceutical Company Limited (TSE: 4502) anunció hoy que los datos sobre los ensayos clínicos de la fase fundamental 2 ALTA (ALK in Lung Cancer Trial ofAP26113, ALK en ensayos de AP26113 para cáncer de pulmón) que evaluaban ALUNBRIG™ (brigatinib) en pacientes con linfoma anaplásico cinasa positivo (ALK+) localmente avanzado o con cáncer de pulmón no microcítico (CPNM) metastásico refractarios al Crizotinib fueron publicados en la Journal of Clinical Oncology (DOI: 10.1200/JCO.2016.71.5904 Journal of Clinical Oncology). El estudio mostró que, para los pacientes que recibieron brigatinib a 180 mg una vez al día después de un periodo introductorio de siete días a 90 mg una vez por día, el Comité de Revisión Independiente (IRC) determinó que la tasa de respuesta global (TRG) confirmada era del 53 por ciento. Además, 67 por ciento de los pacientes con metástasis cerebrales medibles que recibieron este régimen de dosificación alcanzaron una respuesta global intracraneal confirmada. Recientemente Takeda recibió la aprobación acelerada por parte de la Administración de Alimentos y Medicamentos de los Estados Unidos (FDA) sobre ALUNBRIG para el tratamiento de pacientes con CPNM metastásico ALK+ que experimentaron progresión por el crizotinib o que son intolerantes a este. Esta indicación es autorizada bajo la aprobación acelerada sobre la base de la tasa de respuesta del tumor y a la duración de la respuesta. Una aprobación continua para esta indicación puede estar sujeta a la verificación y descripción del beneficio clínico en un ensayo confirmatorio.


News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.


News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.


News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.


News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.

Loading IRC collaborators
Loading IRC collaborators