IRAS

Utrecht, Netherlands
Utrecht, Netherlands
SEARCH FILTERS
Time filter
Source Type

SBS Consulting Pte Ltd is a Singaporean software development company. It has an online payroll software Singapore for small businesses. Its other business software Singapore are CRM System, School Management System, & Clinic Management System. -- SBS Consulting Pte Ltd is a well-known Singaporean software development company. It has a feature-rich, online payroll software Singapore for the use of small and mid-sized businesses. The other business software Singapore offered by SBS are CRM System, School & Tuition Management System, & Clinic Management System."Our web-basedcan add to your credibility and enhance your statutory compliance. It can streamline your payroll processing and reduce your stress level," advised SBS Consulting Pte Ltd.Most of the small business owners, short in resources, always feel the pressure of maintaining the balance between the business needs and the need of executing their statutory compliance. They feel the pinch if they are doing their payroll manually. It is a situation they can resolve by implementing a module-rich"It is but natural that the implementation of aincreases the efficiency and productivity. The automation of the task saves the time, human resources, and money. It also leads to the disbursement of actual salaries to the employees of the business. For this reason, many companies are investigating top payroll software systems," prompted Ms. Meena, the Business Head of SBS Consulting Pte Ltd.• Employee Management• Master Setup Management• Company Management• Banking Compliant – Automated GIRO for almost all Major Banks• Compliant with the regulations issued by CPF Board, IRAS, Ministry of Manpower• Leaves Management• Attendance & Timesheet Management• Claims Management• Progression Planning• Enquiry Management• Email and SMS Management• Real-time Reports and Dashboards• Schedule Management• Tracking• Bio-metric (Finger Scan) Attendance support• Billing & Invoice Management• Itemized Pay slip• Multiple Company Setups & Document Upload• Connectivity withlike MYOB, QuickBooks, etc• Experienced 24X7 customer serviceInvesting in a toplike payroll software Singapore is a worthwhile investment. Some of the businesses even choosethat gives them payroll functionality. It enables the business owners and managers in streamlining payroll function of the firm. The software capably takes over the lengthy calculations that can quickly tire or fatigue a payroll executive. It is repetitive, mindless process and even the slightest loss of concentration can result in a mistake damaging the goodwill of the business."Ourstores many information parameters related to the employees like employee name, age, nationality, NRIC, race, religion, immigration status, education, training, certificates, details of family, emergency phone numbers, email address, etc.Also, the software also facilitates uploading and storing of unlimited employee photos & documents. It also allows unlimited company setups which are a plus point for a business owner having multiple businesses or for an umbrella organization that controls some companies," added Ms. Meena.Recording an employee's attendance and keeping accurate timesheet is a concern for the small as well as large businesses. The data enables them to justly compensate their employees. Inaccurate information not only leads to failed payday but can also sour the relations between the management and the employees. It can also affect the cash flow of the company. The traditional method is to manually track the employees, but it ties up the skilled human resources of the business and wastes them. In a technological era like ours, such wastes are unacceptable."Oursolves this problem by automating the process. It uses biometric finger scanners to maintain the attendance record and timesheet for each employee. The arrangement is tamper-free and tracks an employee's incoming and outgoing to the seconds.SBS'supports different timesheet formats; timesheet entry for one calendar day - one location, one calendar day - multiple locations, one calendar day - multiple employees, multiple employees - one calendar day. It is a useful payroll tool that you can trust," said Ms. Meena.SBS Consulting is a respected software development firm in Singapore. It offers business software Singapore like Payroll Software Singapore, Doctor & Clinic Management Software, CRM System & School Management Software.Contact:Ms. Meena,Visit:High Street Centre,#17-02, 1 North Bridge Road,Singapore - 179094Tel: (65) 6536 0036Email: info@summittech.com.sg


News Article | May 15, 2017
Site: spaceref.com

This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. This particular object stands out from the crowd by actually being composed of two separate galaxies rushing past each other at about 2 million kilometers (1,243,000 miles) per hour. This speed is most likely too fast for them to merge and form a single galaxy. However, because of their small separation of only about 20,000 light-years, the galaxies will distort one another through the force of gravity while passing each other, changing their structures on a grand scale. Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers. The intriguing behaviors of interacting galaxies take many forms; galactic cannibalism, galaxy harassment and even galaxy collisions. The Milky Way itself will eventually fall victim to the latter, merging with the Andromeda Galaxy in about 4.5 billion years. The fate of our galaxy shouldn't be alarming though: while galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur. Please follow SpaceRef on Twitter and Like us on Facebook.


News Article | May 15, 2017
Site: news.yahoo.com

A powerful space telescope orbiting Earth has spied on two galaxies in the midst of a cosmic close call 500 million light-years away. The Hubble Space Telescope spotted two galaxies — collectively called IRAS 06076-2139 — speeding past one another at about 1.2 million miles per hour, according to NASA. SEE ALSO: Countless galaxies billions of light-years away shine in new Hubble photo The two galaxies are moving so fast that they likely won't merge, but the two objects are so huge that they will distort each other as they pass about 20,000 light-years from one another. The immense gravity of the two objects will be able to influence the structure of the galaxies as they pass, changing the positions of stars and gas within them. "Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers," NASA said in a statement. The Milky Way is actually on its way to a galactic collision itself with the Andromeda Galaxy. At some point in about 4.5 billion years the two galaxies will merge into one. That may sound slightly (or more-than-slightly) terrifying, but in reality, it shouldn't be too much cause for personal concern. "While galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur," NASA said of the Andromeda/Milky Way merger. Scientists working with the Hubble just celebrated the space telescope's 27th year in space, and the intrepid eye on the sky is still going strong. NASA has previously said that the telescope should be able to continue working in orbit through at least 2020, two years after the James Webb Space Telescope — Hubble's successor — is expected to get to space.


News Article | May 12, 2017
Site: phys.org

This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. Credit: ESA/Hubble & NASA This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. This particular object stands out from the crowd by actually being composed of two separate galaxies rushing past each other at about 2 million kilometers (1,243,000 miles) per hour. This speed is most likely too fast for them to merge and form a single galaxy. However, because of their small separation of only about 20,000 light-years, the galaxies will distort one another through the force of gravity while passing each other, changing their structures on a grand scale. Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers. The intriguing behaviors of interacting galaxies take many forms; galactic cannibalism, galaxy harassment and even galaxy collisions. The Milky Way itself will eventually fall victim to the latter, merging with the Andromeda Galaxy in about 4.5 billion years. The fate of our galaxy shouldn't be alarming though: while galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur.


News Article | May 12, 2017
Site: www.eurekalert.org

This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments observed the galaxy from a distance of 500 million light-years. This particular object stands out from the crowd by actually being composed of two separate galaxies rushing past each other at about 2 million kilometers (1,243,000 miles) per hour. This speed is most likely too fast for them to merge and form a single galaxy. However, because of their small separation of only about 20,000 light-years, the galaxies will distort one another through the force of gravity while passing each other, changing their structures on a grand scale. Such galactic interactions are a common sight for Hubble, and have long been a field of study for astronomers. The intriguing behaviors of interacting galaxies take many forms; galactic cannibalism, galaxy harassment and even galaxy collisions. The Milky Way itself will eventually fall victim to the latter, merging with the Andromeda Galaxy in about 4.5 billion years. The fate of our galaxy shouldn't be alarming though: while galaxies are populated by billions of stars, the distances between individual stars are so large that hardly any stellar collisions will occur.


News Article | May 12, 2017
Site: www.sciencedaily.com

This image shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare).


Flash Physics is our daily pick of the latest need-to-know developments from the global physics community selected by Physics World's team of editors and reporters A new high-resolution map of dark matter – an invisible substance that appears to have a profound gravitational effect on galaxies and other large-scale structures in the cosmos – has been produced by an international team of astronomers using the Hubble Space Telescope. The map focuses on three galaxy clusters that act as cosmic telescopes by magnifying images of the more distant universe through gravitational lensing. The degree to which this magnification occurs gives an extremely precise measurement of the dark matter within the clusters. "We have mapped all of the clumps of dark matter that the data permit us to detect, and have produced the most detailed topological map of the dark-matter landscape to date," explains Priyamvada Natarajan of Yale University in the US, who led the team. An important feature of the map is that it is in close agreement with computer simulations of how cold dark matter (CDM) – a popular theoretical description of dark matter – is expected to be distributed within the galaxy clusters. The map is described in the Monthly Notices of the Royal Astronomical Society. A hard-to-detect pigment in melanoma skin cancer can be imaged using a laser-based technique. A team at Massachusetts General Hospital's Wellman Center for Photomedicine in the US has used a form of Raman spectroscopy to identify the pheomelanin molecule. Melanoma is the deadliest form of skin cancer and fair skin has a higher probability of developing the hard-to-detect variation of the disease called amelanotic melanoma. This is linked to the fact that fair skin contains a higher concentration of pheomelanin – a pigment, or melanin, within the skin. While the black-brown pigment found in most melanomas is easily observed, pheomelanin is essentially invisible. To detect the pigment, the team, led by Conor Evans, turned to a form of Raman spectroscopy called coherent anti-Stokes Raman Scattering (CARS) microscopy. Raman spectroscopy is a well-known technique that uses lasers to measure the unique chemical vibrations within molecules and hence identify them. CARS microscopy meanwhile, is a high-resolution imaging technique. It focuses two lasers on a sample and "tunes" the energy difference to specific molecular vibrations. This means a high-resolution image can be generated. Using CARS, the researchers successfully imaged the usually invisible pheomelanin by looking for its unique chemical structure. The method could be incorporated into a brand-new tool for early cancer diagnosis. The work will be presented at the OSA Biophotonics Congress: Optics in the Life Sciences meeting on 2–5 April in San Diego, US. It has also been described in Scientific Reports. A connection between the sudden outflows of gas from a supermassive black hole and X-ray bursts has been made by astronomers using two space telescopes – NASA's NuSTAR and the European Space Agency's XMM-Newton. Gas outflows are common features of supermassive black holes, which sit at the centre of large galaxies. These objects ingest vast amounts of material and the dynamics of this accretion process can lead to the ejection of gas in a burp-like ultrafast wind. The team trained the instruments on an outflow from the black hole at the centre of galaxy IRAS 13224-3809 and observed that the temperature of an outflow was changing much more rapidly than had previously been seen in other events – on a timescale of less than 1 h. According to team member Erin Kara of the University of Maryland, these fluctuations provide important clues about where the outflow was created. "Because we saw such rapid variability in the winds, we know that the emission is coming from very close to the black hole itself, and because we observed that the wind was also changing on rapid timescales, it must also be coming from very close to the black hole." The observations were made over several days and revealed that the temperature fluctuations were a response to changes in the intensity of X-rays emitted by the black hole. This information could provide important clues about where the X-rays and outflows are produced. The research is described in Nature.


News Article | March 1, 2017
Site: www.eurekalert.org

Gas outflows are common features of active supermassive black holes that reside in the center of large galaxies. Millions to billions of times the mass of the Sun, these black holes feed on the large disks of gas that swirl around them. Occasionally the black holes eat too much and burp out an ultra-fast wind, or outflow. These winds may have a strong influence on regulating the growth of the host galaxy by clearing the surrounding gas away and suppressing star formation. Scientists have now made the most detailed observation yet of such an outflow, coming from an active galaxy named IRAS 13224-3809. The outflow's temperature changed on time scales of less than an hour, which is hundreds of times faster than ever seen before. The rapid fluctuations in the outflow's temperature indicated that the outflow was responding to X-ray emissions from the accretion disk, a dense zone of gas and other materials that surrounds the black hole. The new observations are published in the journal Nature on March 2, 2017. "Although we have seen these outflows before, this observation was the first time we were able to see the launching of the gases being connected with changes in the luminosity of black holes," said Erin Kara, a postdoctoral researcher in astronomy at the University of Maryland and a co-author of the study. Scientists made these measurements using two space telescopes, NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) telescope and the European Space Agency's (ESA) XMM-Newton. To capture the variability of these signals, scientists focused the XMM-Newton on the black hole for 17 days in a row, and observed the black hole with NuSTAR for six days. To measure the temperatures of these winds, scientists studied X-rays coming from the edge of the black hole. As they travel towards Earth, these X-rays pass through the outflows. Elements such as iron or magnesium present in the outflows can absorb specific parts of the X-ray spectrum, creating signature "dips" in the X-ray signal. By observing these dips, called absorption features, astronomers can learn what elements exist in the wind. The team noticed that the absorption features disappeared and reappeared in the span of a few hours. The researchers concluded that the X-rays were heating up the winds to millions of degrees Celsius, at which point the winds became incapable of absorbing any more X-rays. The observations that the outflows appear to be linked with X-rays, and that both are so highly variable, provide possible clues for locating where exactly the X-rays and outflows originate. "The radiating gas flows into black holes are most variable at their centers," Kara said. "Because we saw such rapid variability in the winds, we know that the emission is coming from very close to the black hole itself, and because we observed that the wind was also changing on rapid time scales, it must also be coming from very close to the black hole." To further study galaxy formation and black holes, Chris Reynolds, a professor of astronomy at UMD and a co-PI on the project, noted the need for more detailed data and observations. "We need to observe this black hole with better and more spectrometers, so we can get more details about these outflows," Reynolds said. "For instance, we don't know whether the outflow is composed of one or multiple sheets of gas. And we need to observe on multiple bands in addition to X-rays--that would allow us to detect molecular gases, and colder gases, that can be driven by these high-energy outflows. All that information will be crucial to understanding how these outflows are connected to galaxy formation." This research was supported by NASA, the European Space Agency, the European Research Council (Award No. 340492), the European Union Seventh Framework Programme (Award No. n.312789, StrongGravity), and the United Kingdom Science and Technology Facilities Council. The content of this article does not necessarily reflect the views of these organizations. The research paper, "Relativistically outflowing gas responds to the inner accretion disk of a black hole," Michael Parker, Ciro Pinto, Andrew Fabian, Anne Lohfink, Douglas Buisson, William Alston, Erin Kara, Edward Cackett, Chia-Ying Chiang, Thomas Dauser, Barbara De Marco, Luigi Gallo, Javier Garcia, Fiona Harrison, Ashley King, Matthew Middleton, Jon Miller, Giovanni Miniutti, Christopher Reynolds, Phil Uttley, Ranjan Vasudevan, Dominic Walton, Daniel Wilkins and Abderahmen Zoghbi, was published in the journal Nature on March 2, 2017. Media Relations Contact: Irene Ying, 301-405-5204, zying@umd.edu University of Maryland College of Computer, Mathematical, and Natural Sciences 2300 Symons Hall College Park, MD 20742 http://www. @UMDscience About the College of Computer, Mathematical, and Natural Sciences The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.


News Article | March 3, 2017
Site: news.yahoo.com

A team of scientists detected temperature swings in ultrafast “burps” of hot winds emitted by a black hole's accretion disk. These outflows could be responsible for preventing the birth of stars. Black holes, as we all know, are voracious eaters. These objects are so dense that nothing, not even light, can escape once ensnared by their immense gravitational pull. Occasionally, though, young and overeager black holes gobble down so much material so fast that they produce ultrafast “burps” of hot winds. Observations now conducted using NASA’s NuSTAR and the European Space Agency’s XMM-Newton telescopes indicate that these outflows, which can travel at nearly a quarter of the speed of light, could be suppressing the birth of stars in galaxies. Although it has previously been suggested that black hole-driven jets and winds can inhibit star formation, this is the first time the temperature swings of these outflows has been measured and their interactions with a black hole’s radiation studied. “We know that supermassive black holes affect the environment of their host galaxies, and powerful winds arising from near the black hole may be one means for them to do so,” NuSTAR principal investigator Fiona Harrison, a professor of physics at the California Institute of Technology, said in a statement released Wednesday. “The rapid variability, observed for the first time, is providing clues as to how these winds form and how much energy they may carry out into the galaxy.” For the purpose of this study, which was published in the March 2 issue of the journal Nature, the researchers trained their telescopes on IRAS 13224-3809 — an active galaxy located in the constellation Centaurus. This revealed that the ultrafast outflows emanating from the vicinity of the supermassive black hole at the galaxy’s center were heating up and cooling down in a span of just a few hours — hundreds of times faster than ever seen before. This, the researchers said, was an indication that the outflows were responding to X-ray emissions from the accretion disk, which is an orbiting disk of dust, gas and debris that surrounds active black holes. The X-rays were heating up the winds to millions of degrees, pushing them past a point where they become incapable of absorbing any more X-rays. These high-speed winds, in turn, could be responsible for suppressing star formation — a process that occurs at a temperature of roughly 10 Kelvin (-442 degrees Fahrenheit), at which point clouds of gas and dust cool down enough to condense. However, further observations would be needed to better understand the role these winds play in regulating the environment within their host galaxies. “We need to observe this black hole with better and more spectrometers, so we can get more details about these outflows,” study co-author Christopher Reynolds, a professor of astronomy at the University of Maryland, said in a statement. “For instance, we don't know whether the outflow is composed of one or multiple sheets of gas. And we need to observe on multiple bands in addition to X-rays — that would allow us to detect molecular gases, and colder gases, that can be driven by these high-energy outflows.”


News Article | March 1, 2017
Site: phys.org

An artist impression illustrating a supermassive black hole with X-ray emission emanating from its inner region (pink) and ultrafast winds streaming from the surrounding disk (purple). Credit: The European Space Agency (ESA) Gas outflows are common features of active supermassive black holes that reside in the center of large galaxies. Millions to billions of times the mass of the Sun, these black holes feed on the large disks of gas that swirl around them. Occasionally the black holes eat too much and burp out an ultra-fast wind, or outflow. These winds may have a strong influence on regulating the growth of the host galaxy by clearing the surrounding gas away and suppressing star formation. Scientists have now made the most detailed observation yet of such an outflow, coming from an active galaxy named IRAS 13224-3809. The outflow's temperature changed on time scales of less than an hour, which is hundreds of times faster than ever seen before. The rapid fluctuations in the outflow's temperature indicated that the outflow was responding to X-ray emissions from the accretion disk, a dense zone of gas and other materials that surrounds the black hole. The new observations are published in the journal Nature on March 2, 2017. "Although we have seen these outflows before, this observation was the first time we were able to see the launching of the gases being connected with changes in the luminosity of black holes," said Erin Kara, a postdoctoral researcher in astronomy at the University of Maryland and a co-author of the study. Scientists made these measurements using two space telescopes, NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) telescope and the European Space Agency's (ESA) XMM-Newton. To capture the variability of these signals, scientists focused the XMM-Newton on the black hole for 17 days in a row, and observed the black hole with NuSTAR for six days. To measure the temperatures of these winds, scientists studied X-rays coming from the edge of the black hole. As they travel towards Earth, these X-rays pass through the outflows. Elements such as iron or magnesium present in the outflows can absorb specific parts of the X-ray spectrum, creating signature "dips" in the X-ray signal. By observing these dips, called absorption features, astronomers can learn what elements exist in the wind. The team noticed that the absorption features disappeared and reappeared in the span of a few hours. The researchers concluded that the X-rays were heating up the winds to millions of degrees Celsius, at which point the winds became incapable of absorbing any more X-rays. The observations that the outflows appear to be linked with X-rays, and that both are so highly variable, provide possible clues for locating where exactly the X-rays and outflows originate. "The radiating gas flows into black holes are most variable at their centers," Kara said. "Because we saw such rapid variability in the winds, we know that the emission is coming from very close to the black hole itself, and because we observed that the wind was also changing on rapid time scales, it must also be coming from very close to the black hole." To further study galaxy formation and black holes, Chris Reynolds, a professor of astronomy at UMD and a co-PI on the project, noted the need for more detailed data and observations. "We need to observe this black hole with better and more spectrometers, so we can get more details about these outflows," Reynolds said. "For instance, we don't know whether the outflow is composed of one or multiple sheets of gas. And we need to observe on multiple bands in addition to X-rays—that would allow us to detect molecular gases, and colder gases, that can be driven by these high-energy outflows. All that information will be crucial to understanding how these outflows are connected to galaxy formation." More information: The response of relativistic outflowing gas to the inner accretion disk of a black hole, Nature, nature.com/articles/doi:10.1038/nature21385

Loading IRAS collaborators
Loading IRAS collaborators