Time filter

Source Type

Innsbruck, Austria

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2011-ITN | Award Amount: 4.13M | Year: 2012

The need for quantitative and fast identification of trace gaseous compounds in complex chemical matrices continuously pushes the limits of analytical chemistry in many areas of relevance to the EU, including food, health, the environment, and security. A relatively new broad-based and rapidly growing analytical technique, proton transfer reaction mass spectrometry (PTR-MS), combines excellent chemical specification with ultra high detection sensitivity in real-time, but is only partially exploited owing to the lack of a focused research programme in terms of its scientific fundamentals and applications, and owing to a lack of an intersectoral and interdisciplinary based forum for the exchange of ideas and best practice to further develop PTR-MS. The demand for PTR-MS is outstripping the supply of highly qualified chemists who cannot only use the technology, but who also have a broad background in analytical chemistry, and are capable of leading multidisciplinary research/commercial activities. There is an urgent need within Europe for the harmonized training of ESRs in analytical chemistry within many sectors and across many disparate scientific disciplines and applications. The overall goal of this multidisciplinary and interdisciplinary ITN is to train the next generation of analytical scientists in the skills necessary for the development and use of PTR-MS and other analytical technologies (including GC-MS, SIFT-MS and IMS) for the detection of trace gaseous compounds. Our vision is to enhance our understanding of the crucial role these chemicals play in many complex chemical environments and the underpinning science needed to develop techniques to address major analytical challenges. The network is intersectoral in nature combining commercial (both manufacturers and end-users), governmental and academic concerns using a range of state-of-the-art analytical techniques, to address a number of topical analytical issues in an interdisciplinary cooperative.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2012-ITN | Award Amount: 3.77M | Year: 2012

The aim of CLOUD-TRAIN is to establish a multi-site network of Early Stage Researchers (here predominantly PhD students) and Experienced Researchers at 10 partner institutions across Europe. The role of aerosol nucleation for atmospheric CCN levels, clouds and climate is investigated. The influence of various vapours and ions for aerosol nucleation, growth and cloud processes is studied to significantly improve our understanding of natural and anthropogenic climate forcing as well as feedback mechanisms. The major focus of the network will be three sets of common experiments on ternary nucleation (ion-induced and neutral) and ion-aerosol-cloud interaction carried out at CERN to which all trainees contribute. These experiments are conducted at the newly established unique aerosol chamber CLOUD that is exposed to a CERN ionizing particle beam where the effects of cosmic rays on aerosol and clouds can be efficiently simulated. At the CLOUD chamber nucleation experiments are performed at an unprecedented level of precision and completeness using highly innovative instrumentation. A comprehensive high quality training programme is set up for the fellows. Additional to the experiments at CERN, they are brought together for network training events such as annual summer schools and workshops for integral data analysis. Courses by world leading experts are taught spanning from general aerosol chemistry and physics to specialized sessions. The summer schools and workshops are specifically tailored to the needs of the trainees and are scheduled in addition to the national PhD programmes of their hosting institutions. Comprehensive transferable skills training is included (e.g. scientific writing, presenting talks, interaction with the media, entrepreneurship, IPR, management). Five network partners are from the private sector (2 full, 3 assoc.). Secondments are planned for each fellow to broaden the experience and to include exposure to another sector.

Smith D.,Keele University | Spanel P.,J. Heyrovsky Institute of Physical Chemistry | Herbig J.,IONICON Analytik GmbH | Beauchamp J.,Fraunhofer Institute for Process Engineering and Packaging
Journal of Breath Research

Breath analysis research is being successfully pursued using a variety of analytical methods, prominent amongst which are gas chromatography with mass spectrometry, GC-MS, ion mobility spectrometry, IMS, and the fast flow and flow-drift tube techniques called selected ion flow tube mass spectrometry, SIFT-MS, and proton transfer reaction mass spectrometry, PTR-MS. In this paper the case is made for real-time breath analysis by obviating sample collection into bags or onto traps that can suffer from partial degradation of breath metabolites or the introduction of impurities. Real-time analysis of a broad range of volatile chemical compounds can be best achieved using SIFT-MS and PTR-MS, which are sufficiently sensitive and rapid to allow the simultaneous analyses of several trace gas metabolites in single breath exhalations. The basic principles and the ion chemistry that underpin these two analytical techniques are briefly described and the differences between them, including their respective strengths and weaknesses, are revealed, especially with reference to the analysis of the complex matrix that is exhaled breath. A recent innovation is described that combines time-of-flight mass spectrometry with the proton transfer flow-drift tube reactor, PTR-TOFMS, which provides greater resolution in the analytical mass spectrometer and allows separation of protonated isobaric molecules. Examples are presented of some recent data that well illustrate the quality and real-time feature of SIFT-MS and PTR-MS for the analysis of exhaled breath for physiological/biochemical/pharmacokinetics studies and for the identification and quantification of biomarkers relating to specific disease states. © 2014 IOP Publishing Ltd. Source

Schausberger P.,University of Natural Resources and Life Sciences, Vienna | Peneder S.,University of Natural Resources and Life Sciences, Vienna | Jurschik S.,IONICON Analytik GmbH | Hoffmann D.,University of Natural Resources and Life Sciences, Vienna
Functional Ecology

Indirect induced plant defence via emission of herbivore-induced plant volatiles (HIPV) to recruit natural enemies of herbivores is a ubiquitous phenomenon, but whether and how emission of above-ground HIPVs is adaptively modulated by below-ground mutualistic micro-organisms is unknown. We investigated the effects of the mycorrhizal fungus Glomus mosseae on chemical composition of HIPVs emitted by bean plants Phaseolus vulgaris attacked by spider mites, Tetranychus urticae, using proton-transfer mass spectrometry, and attraction of the spider mites' natural enemy, the predatory mite Phytoseiulus persimilis, to these HIPVs using a Y-tube olfactometer. Mycorrhiza significantly changed the HIPV composition. Most notably, it increased the emission of β-ocimene and β-caryophyllene, two compounds synthesized de novo upon spider mite attack. The constitutively emitted methyl salicylate was increased by spider mite infestation but decreased by mycorrhiza. The predators responded strongly to HIPVs emitted by plants infested for 6days and preferred HIPVs of mycorrhizal plants to those of non-mycorrhizal plants. In contrast, they were less responsive and indiscriminative to mycorrhization when exposed to volatiles emitted by non-infested plants and plants infested by spider mites for 1 or 3days. Our study provides a key example of an adaptive indirect HIPV-mediated interaction of a below-ground micro-organism with an above-ground carnivore. © 2011 The Authors. Functional Ecology © 2011 British Ecological Society. Source

Herbig J.,IONICON Analytik GmbH | Beauchamp J.,Fraunhofer Institute for Process Engineering and Packaging
Journal of Breath Research

Despite growing interest and considerable progress in breath research over the last decade, standardized practices for the sampling and analysis of breath gas volatiles remain elusive. The primary reasons for this are (a) the rich chemical diversity of exhaled breath that covers an extensive range of volatile organic compounds at highly varied concentrations, (b) the vast disparity in the analytical tools employed, (c) diverse study goals and (d) the presence of (unidentified) confounders. These aspects place stringent but divergent demands on sampling and analysis: each analytical tool, target compound and concentration range requires its own specific protocol and in many cases the latter two are not even known a priori. The ongoing rapid developments and constant discoveries in the field of breath research and the lack of established best practices in breath gas sampling and analysis currently preclude an acceptable overall standardization of these methods. This paper addresses these manifold issues and suggests a framework that separately considers individual stages of sampling and analysis with a view to establishing standardization in the analysis of breath gas volatiles to suit different target compounds and analytical technologies. © 2014 IOP Publishing Ltd. Source

Discover hidden collaborations