Madison, WI, United States
Madison, WI, United States

Time filter

Source Type

This invention relates to the identification of peptide binding to ligands, and in particular to identification of epitopes expressed by microorganisms and by mammalian cells. The present invention provides polypeptides comprising the epitopes, and vaccines, antibodies and diagnostic products that utilize or are developed using the epitopes.


Homan E.J.,ioGenetics | Bremel R.D.,ioGenetics
PLoS ONE | Year: 2011

Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968-2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2. © 2011 Homan, Bremel.


Patent
ioGenetics | Date: 2011-11-16

The present invention relates to the use of a recombinant fusion protein comprising a) a recombinant monoclonal antibody that binds to a pathogenic microorganism; and b) at least a portion of a biocide, in the treatment of a subject infected with or at risk of infection by a pathogenic microorganism.


Patent
University of Arizona and ioGenetics | Date: 2013-02-06

The present invention relates to fusion proteins comprising a microorganism targeting molecule (e.g., immunoglobulin) and a biocide. The present invention also relates to therapeutic and prophylactic methods of using a fusion protein comprising a microorganism targeting molecule and a biocide in diverse fields.


Patent
ioGenetics | Date: 2013-11-13

The present invention relates antimicrobial compositions, and in particular to antigen binding proteins comprising one or more domains that provide antimicrobial activity.


This invention relates to the identification of peptide binding to ligands, and in particular to identification of epitopes expressed by microorganisms and by mammalian cells. The present invention provides polypeptides comprising the epitopes, and vaccines, antibodies and diagnostic products that utilize or are developed using the epitopes.


The present invention provides a bioinformatic methodology for prediction of peptidase cleavage sites based on principal component analysis and based on training sets obtained by experimental protein cleavage. This invention is not limited to training sets derived from CSL approaches, nor to any other experimental determination of cleavage site. Undoubtedly there will be new approaches to developed for experimental measurement of cleavage sites and these too may be the source of training sources for the present invention.


This invention relates to the identification of peptide binding to ligands, and in particular to identification of epitopes expressed by microorganisms and by mammalian cells. The present invention provides polypeptides comprising the epitopes, and vaccines, antibodies and diagnostic products that utilize or are developed using the epitopes.


Patent
ioGenetics and University of Arizona | Date: 2010-01-13

The present invention relates to fusion proteins comprising a microorganism targeting molecule (e.g., immunoglobulin) and a biocide. The present invention also relates to therapeutic and prophylactic methods of using a fusion protein comprising a microorganism targeting molecule and a biocide in diverse fields.


Loading ioGenetics collaborators
Loading ioGenetics collaborators