Time filter

Source Type

Mester B.,Victoria University of Wellington | Ritter L.J.,University of Adelaide | Pitman J.L.,Victoria University of Wellington | Bibby A.H.,Victoria University of Wellington | And 4 more authors.
Reproduction, Fertility and Development | Year: 2015

Bone morphogenetic protein 15 (BMP15) is a key intraovarian growth factor regulating mammalian fertility, yet expression and localisation of different BMP15 protein forms within ovarian follicles around the time of the preovulatory LH surge remains unclear. Using immunoblotting and immunocytochemistry, the present study identified that post-translationally processed BMP15 proregion and mature proteins are increasingly expressed and localised with cumulus and granulosa cells from mice treated with pregnant mare's serum gonadotropin (PMSG) + human chorionic gonadotrophin (hCG). However, this increased expression was absent in cumulus-oocyte complexes matured in vitro. Pull-down assays further revealed that the recombinant BMP15 proregion is capable of specific interaction with isolated granulosa cells. To verify an oocyte, and not somatic cell, origin of Bmp15 mRNA and coregulated growth differentiation factor 9 (Gdf9), in situ hybridisation and quantitative polymerase chain reaction results confirmed the exclusive oocyte localisation of Bmp15 and Gdf9, regardless of treatment or assay method. Relative oocyte expression levels of Bmp15 and Gdf9 decreased significantly after PMSG + hCG treatment; nevertheless, throughout all treatments, the Bmp15:Gdf9 mRNA expression ratio remained unchanged. Together, these data provide evidence that the preovulatory LH surge leads to upregulation of several forms of BMP15 protein secreted by the oocyte for putative sequestration and/or interaction with ovarian follicular somatic cells. © 2015 CSIRO.


Rapp D.,Agresearch Ltd. | Waller J.,Agresearch Ltd. | Brightwell G.,Agresearch Ltd. | Muirhead R.W.,Invermay Agricultural Center
Applied and Environmental Microbiology | Year: 2010

Lyophilization was used to concentrate bovine feces prior to DNA extraction and analysis using real-time PCR. Lyophilization significantly improved the sensitivity of detection compared to that in fresh feces and was associated with reliable quantification of both Escherichia coli O157:H7 and Campylobacter jejuni bacteria present in feces at concentrations ranging between 2 log 10 and 6 log10 CFU g-1. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Reader K.L.,Agresearch Ltd. | Heath D.A.,Agresearch Ltd. | Heath D.A.,Victoria University of Wellington | Lun S.,Agresearch Ltd. | And 8 more authors.
Reproduction | Year: 2011

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors known to be involved in regulating the proliferation and differentiation of granulosa cells during follicular growth. The aims of this study were to determine the signalling pathways used by recombinant forms of murine and ovine GDF9 and BMP15 in combination (GDF9+BMP15) and the molecular complexes formed by combinations of these factors. Differences in the molecular forms of combinations of murine and ovine GDF9+BMP15 were observed by western blot analysis. Ovine GDF9+BMP15-stimulated 3H-thymidine uptake was completely blocked by SMAD2/3 and nuclear factor-κB pathway inhibitors and partially blocked by a p38-mitogen-activated protein kinase (MAPK) inhibitor. Thymidine uptake by murine GDF9+BMP15 was reduced by the SMAD2/3 and extracellular signal-regulated kinase-MAPK pathway inhibitors and increased after addition of a c-Jun N-terminal kinase inhibitor. Stimulation of 3H-thymidine uptake by GDF9+BMP15 from either species was not affected by the SMAD1/5/8 pathway inhibitor. In conclusion, both murine and ovine GDF9+BMP15-stimulated thymidine incorporation in rat granulosa cells was dependent on the SMAD2/3 signalling pathway but not the SMAD1/5/8 pathway. Divergence in the non-SMAD signalling pathways used by murine and ovine GDF9+BMP15 was also evident and may be due to the differences observed in the molecular complexes formed by these factors. These results are consistent with the hypothesis that the disparate cooperative functions of GDF9 and BMP15 in different species are mediated by divergent non-SMAD signalling pathways. © 2011 Society for Reproduction and Fertility.


Rapp D.,Agresearch Ltd. | Ross C.M.,Agresearch Ltd. | Pleydell E.J.,Massey University | Muirhead R.W.,Invermay Agricultural Center
Applied and Environmental Microbiology | Year: 2012

Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P< 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · -1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. © 2012, American Society for Microbiology.


Reader K.L.,Agresearch Ltd. | Haydon L.J.,Agresearch Ltd. | Littlejohn R.P.,Invermay Agricultural Center | Juengel J.L.,Agresearch Ltd. | McNatty K.P.,Victoria University of Wellington
Reproduction, Fertility and Development | Year: 2012

Booroola ewes homozygous (BB) for a mutation in the bone morphogenetic protein receptor-1b (BMPR1B) gene exhibit higher ovulation rates, have larger diameter oocytes at earlier stages of follicular development (i.e. Type 3) and smaller diameter follicles at ovulation than wild-type (++) sheep. However, it is not known when BMPR1B is first expressed in the developing ovary or the cell types involved. In addition, the effects of the BMPR1B mutation on primordial (Type 1) follicles or during growth to the Type 3 stage are unknown. In the present study, BB and++fetal ovaries at Days 30-135 of gestation were screened by in situ hybridisation for BMPR1B mRNA. Ovaries from BB and++lambs were examined by microscopy to measure follicular and oocyte ultrastructural characteristics in Type 1-3 follicles. BMPR1B mRNA was observed in ovaries from Day 35 of gestation and was evident in oocytes of newly forming and fully formed Type 1 follicles. In BB animals, the Type 1 follicles had larger mean follicular and oocyte diameters, a greater volume of mitochondria, smooth endoplasmic reticulum and ribosomes and a greater surface area of junctions with the granulosa cells compared with++animals. It is concluded that the BMPR1B mutation alters follicular development from the onset of follicular formation. © 2012 CSIRO.


I came across a neat article in Scientific American that described how reindeer and elk regrow their antlers every year. Could you imagine putting that much energy into growing new bone each year complete with a velvety cover containing nerves, skin, and blood vessels? Although full-grown antlers lose their blood supply and animals scrape the velvet layer off to reveal just bone. Researchers have explored whether understanding this amazing process of annual antler regeneration could lead to new therapies to regrow nerves or organs in humans. The nerve fibers that innervate the antlers in deer originate from the trigeminal nerve. These sensory fibers grow at an impressive rate of up to 2 cm every day! The nerves are located in the velvet that covers the external surface of the antlers and they are closely associated with skin and the blood supply, which gives them access to nutrients and molecules that can help guide their growth.  The cartilage and bone are found internally.  The antlers grow annually from a base of sorts, called the pedicle. The pedicle is a permanent growth on the frontal bone which has been found to contain stem cells that are responsible for creating the internal components of the antlers. It is thought that the external components, including the blood supply and nerves are stimulated to grow by chemical signals and perhaps mechanical cues from the growth of the internal components. Dr. Li from the AgResearch Invermay Agricultural Center in New Zealand, has suggested that identifying these chemical signals may lead to new discoveries in organ regeneration for humans. To learn more about how these animals regrow antlers, check out this video:


Lokman P.M.,University of Otago | Kazeto Y.,Hokkaido University | Ozaki Y.,University of Otago | Ijiri S.,Hokkaido University | And 6 more authors.
Reproduction | Year: 2010

In order to study the regulation of the growth differentiation factor-9 (gdf9) gene in a primitive teleost with semelparous life history, we cloned a cDNA encoding shortfinned eel Gdf9, expressed a partial peptide in Escherichia coli, and raised an antiserum to evaluate changes in Gdf9 expression during its pituitary homogenate-induced reproductive cycle. The effects of in vivo and in vitro exposure to the androgen 11-ketotestosterone (11-KT), known to affect previtellogenic (PV) oocyte growth, were also determined. Furthermore, we investigated whether Gdf9 expression was metabolically gated by treating PV fish with recombinant GH in vivo. Immunoreactive proteins of ca. 52 and 55 kDa were identified by western blot analysis. Gdf9 message and protein were most abundant in PV oocytes, and peaked slightly earlier for mRNA than for protein. Captivity resulted in reduced gdf9 mRNA levels, which were restored following pituitary homogenate treatment. As oocytes progressed through induced oogenesis, Gdf9 expression decreased. Neither 11-KT nor GH treatment affected gdf9 mRNA levels in PV fish, although GH could partially restore handling- or captivity-induced decreases in gdf9 mRNA levels. Semelparous eels thus show an expression pattern of Gdf9 during oogenesis that is similar to that seen in other vertebrates, that appears responsive to handling or captivity stress, and whose control remains to be elucidated. © 2010 Society for Reproduction and Fertility.


Crawford J.L.,Victoria University of Wellington | McLeod B.J.,Invermay Agricultural Center | Eckery D.C.,Victoria University of Wellington
General and Comparative Endocrinology | Year: 2011

The main purpose of this review is to provide a comprehensive update on what is known about the regulatory mechanisms of the hypothalamic-pituitary-ovarian axis in the brushtail possum, and to report on the outcomes of attempts made to manipulate by hormonal means, these processes in the possum. Over the last 15 years, several unique features of possum reproductive physiology have been discovered. These include an extended follicular phase despite elevated concentrations of FSH during the luteal phase, and early expression of LH receptors on granulosa cells of small antral follicles, suggesting a different mechanism for the selection of a dominant follicle. The use of routine synchronisation protocols that are effective in eutherians has failed to be effective in possums, and so the ability to reliably synchronise oestrus in this species remains a challenge. © 2010 Elsevier Inc.


McDowell R.W.,Invermay Agricultural Center | Monaghan R.M.,Invermay Agricultural Center
Journal of Environmental Quality | Year: 2015

With the installation of artificial drainage and large inputs of lime and fertilizer, dairy farming can be profitable on marginal land. We hypothesized that this will lead to large phosphorus (P) losses and potential surface water impairment if the soil has little capacity to sorb added P. Phosphorous was measured in drainage from three "marginal" soils used for dairying: an Organic soil that had been developed out of scrub for 2 yr and used for winter forage cropping, a Podzol that had been developed into pasture for 10 yr, and an intergrade soil that had been in pasture for 2 yr. Over 18 mo, drainage was similar among all sites (521-574 mm), but the load leached to 35-cm depth from the Organic soil was 87 kg P ha-1 (~89% of fertilizer-P added); loads were 1.7 and 9.0 kg ha-1 from the Podzol and intergrade soils, respectively. Soil sampling to 100 cm showed that added P leached throughout the Organic soil profile but was stratified and enriched in the top 15 cm of the Podzol. Poor P sorption capacity (<5%) in the Organic soil, measured as anion storage capacity, and tillage (causing mineralization and P release) in the Organic and intergrade soils were thought to be the main causes of high P loss. It is doubtful that strategies would successfully mitigate these losses to an environmentally acceptable level. However, anion storage capacity could be used to identify marginal soils with high potential for P loss for the purpose of managing risk. © American Society of Agronomy, Crop Science Society of America.


McDowell R.W.,Invermay Agricultural Center | Nash D.,Future Farming Systems Research Division
Journal of Environmental Quality | Year: 2012

The loss of phosphorus (P) from land to water is detrimental to surface water quality in many parts of New Zealand and Australia. Farming, especially pasture-based dairying, can be a source of P loss, but preventing it requires a range of fully costed strategies because little or no subsidies are available and the effectiveness of mitigation strategies varies with different farm management systems, topography, stream density, and climate. This paper reviews the cost-effectiveness of mitigation strategies for New Zealand and Australian dairy farms, grouping strategies into (i) management (e.g., decreasing soil test P, fencing streams off from stock, or applying low-water-soluble P fertilizers), (ii) amendments (e.g., alum or red mud [Bauxite residue]), and (iii) edge-of-field mitigations (e.g., naturalor constructed wetlands). In general, onfarm management strategies were the most cost-effective way of mitigating P exports (cost range, $ 0 to $ 200 per kg P conserved). Amendments, added to tile drains or directly to surface soil, were often constrained by supply or were labor intensive. Of the amendments examined, red mud was cost effective where cost was offset by improved soil physical properties. Edge-of-field strategies, which remove P from runoff (i.e., wetlands) or prevent runoff (i.e., irrigation runoff recycling systems), were generally the least cost effective, but their benefits in terms of improved overall resource efficiency, especially in times of drought, or their effect on other contaminants like N need to be considered. By presenting a wide range of fully costed strategies, and understanding their mechanisms, a farmer or farm advisor is able to choose those that suit their farm and maintain profitability. Further work should examine the potential for targeting strategies to areas that lose the most P in time and space to maximize the cost-effectiveness of mitigation strategies, quantify the benefits of multiple strategies, and identify changes to land use that optimize overall dairy production, but minimize catchment scale, as versus farm scale, nutrient exports. © 2012 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Loading Invermay Agricultural Center collaborators
Loading Invermay Agricultural Center collaborators