London, United Kingdom
London, United Kingdom

Invensys Ltd. is a multinational engineering and information technology company headquartered in London, United Kingdom. It was formed in 1999 through the merger of BTR plc and Siebe plc. It has offices in more than 50 countries and its products are sold in around 180 countries. It was taken over by the French multinational Schneider Electric for a total consideration of £3.4 billion in January 2014. Schneider plan to replace the "Invensys" name with their own, therefore the "Invensys" brand name shall be phased out. Invensys lines of business are grouped into four segments: Software, Industrial Automation, Energy Controls and Appliance. Its brands include Avantis, Eurotherm, Foxboro, IMServ, InFusion, Triconex, SimSci, Skelta, Wonderware, Drayton, Eberle, Eliwell. Wikipedia.


Time filter

Source Type

Targeted distributing of reports containing historical process control information to particular user devices via a communications network. A curating service permits assigning a score to each report based on an interest level value of the historical process control information to a user associated with each user device and/or an urgency value of the historical process control information. Routing reports to user devices based on the score raises visibility of the historical process control information without overburdening the communications network.


Patent
Invensys | Date: 2015-09-23

Systems and methods for generating an event-based data set using a computer implemented asset monitoring system are provided. An asset repository stores data related to one or more commissioned assets of an asset monitoring system. When event data is received from an asset, whether an asset maintenance record corresponding to the asset exists in the asset repository is determined based on comparing the data in the asset repository to the event data. When the asset maintenance record is determined to not exist in the asset repository, an asset identification record corresponding to the asset is rendered. The asset identification record comprises the event data and additional asset-related data collected from the asset. An event-based data set is generated based on the asset identification record.


Patent
Invensys | Date: 2016-02-05

A slew rate detection circuit connected to a sensor detects when an analog electrical signal from the sensor indicates a slew rate that exceeds a threshold value, and generates an interrupt electrical signal when the slew rate is detected as exceeding the threshold value. A control circuit determines a measurement value of the physical property in response to receiving the interrupt signal. The control circuit is connected to an A/D converter, which converts the analog electrical signal into a digital electrical signal, and performs a plurality of sensing system operations including determining the measurement value of the physical property as a function of the digital electrical signal.


Patent
Invensys | Date: 2016-08-17

A magnetic flowmeter has a transmitter module that generates a drive signal for driving a magnetic field in a flowing fluid. A flowtube module samples a voltage induced in the fluid by the magnetic field and generates a measurement signal. A single communication path carries the drive signal from the transmitter module to the flowtube module and the measurement signal from the flowtube module to the transmitter module. The flowtube module generates a digital measurement signal. The flowtube module can include a processor for bundling the measurement signal with other information such as calibration data for the flowtube. In addition, the processor can control the timing of flowtube module operations so that the flowtube module samples the induced voltage and transmits the measurement signal to the transmitter module at different times.


An electromagnetic flowmeter has a flowtube configured to carry a conductive fluid. The flowtube has wall made of a conductive material. The wall has an inner surface surrounding a fluid flow path for the fluid. A non-conductive liner is positioned to electrically insulate the flowtube wall from the fluid. The flowtube and non-conductive liner define an electrode mounting hole. An electrode extends through the electrode mounting hole. The electrode and the non-conductive liner form a fluidic seal between the electrode mounting hole and the fluid flow path. At least a portion of the electrode is arranged in fluid communication with the flowtube within the electrode mounting hole. A short circuit detector can detect failure of the seal when conductive fluid that has leaked past the seal creates a short circuit as a result of the fluid communication between the flowtube and the electrode mounting hole.


Patent
Invensys | Date: 2016-11-02

High availability and data migration in a distributed process control computing environment. Allocation algorithms distribute data and applications among available compute nodes (130), such as controllers in a process control system (100). In the process control system (100), an input/output device, such as a fieldbus module (120), can be used by any controller. Databases (114, 116) store critical execution information for immediate takeover by a backup compute element. The compute nodes (130) are configured to execute algorithms for mitigating dead time in the distributed computing environment.


A system for metering flow of a fluid has a vibratable flowtube for receiving a multiphase fluid flow. A driver is configured to vibrate the flowtube. A pair of sensors is positioned to detect movement of the flowtube at different locations on the flowtube. Pressure and temperature sensors are positioned to measure a pressure of the fluid. One or more processors are configured to use a phase difference between the sensor signals to determine a fluid flow rate through the flowtube. The one or more processors are further configured to determine an amount of dissolved gas in the multiphase fluid using the pressure, the temperature, and the relative amounts the multiple liquids in the multiphase fluid.


Patent
Invensys | Date: 2016-09-21

A system for improving production of a process control system comprises a processor, sensors connected to one or more assets in the process control system, human-machine interfaces, and a storage memory storing instructions for execution on the processor. The system receives process data via the sensors and determines an input cost of the one or more assets and an output value of the one or more assets. The system provides a net production value of the one or more assets based on the determined input cost and output value. The system stores the input cost, output value, and net production value on a storage memory and provides the input cost, output value, and net production value along with critical asset performance information of asset value, asset performance and opportunity costs for each asset and asset set in the operation to a user via the human-machine interfaces.


A well test system for testing fluids produced from one or more petroleum wells has a separator and a plurality of multiphase flow metering systems, each of which has the capability, over at least a portion of its operating envelope, of separately measuring flow rates of oil, water, and gas. The well test system has a fluidic system, including gas leg conduits coupling the separator to the multiphase flow metering systems, liquid leg conduits coupling separator to the multiphase flow metering systems, and bypass conduits for directing multiphase fluid to the multiphase flow metering systems while bypassing the separator. Valves are configured to selectively route fluid flow though the fluidic system to selectively bypass the separator when the multiphase flow metering systems can be used to provide separate flow rates of oil, water, and gas in the unseparated multiphase fluids from the well.


Patent
Invensys | Date: 2016-03-24

A method of making a sensor assembly for a vortex flowmeter includes securing a vortex sensor to a vortex sensor housing. The vortex sensor housing is secured to a sensor body that is configured to seal a process penetration opening to limit flow of process fluid out of the flowmeter through the process penetration opening. A pair of pressure-responsive diaphragms is secured to the vortex sensor housing such that the pressure-responsive diaphragms face outwardly from opposite sides of the housing and such that the vortex sensor is positioned to detect motion of at least one of the pressure-responsive diaphragms. A mounting hole is made in the sensor body spaced apart from the vortex sensor housing. A temperature sensor housing is secured to the sensor body through the mounting hole. A temperature sensor is inserted in the temperature sensor housing for sensing a temperature of the process fluid.

Loading Invensys collaborators
Loading Invensys collaborators