Time filter

Source Type

Tucker, GA, United States

InVasc Therapeutics and Ohio State University | Date: 2012-06-12

Pharmaceutical compounds and compositions are provided which are methylenedioxy phenolic compounds and their derivatives, along with methods of making them and methods of using them for therapeutic purposes. The compounds and compositions are advantageous in that they can be used to treat or prevent cardiovascular disease, vascular disease and/or inflammatory disease, as well as Type I and Type II Diabetes and Dyslipidemia patients at risk for hypertension, stroke, cardiovascular and renal disease.

Liu C.,Hangzhou Normal University | Liu C.,Ohio State University | Desikan R.,InVasc Therapeutics | Ying Z.,Ohio State University | And 11 more authors.
PLoS ONE | Year: 2012

Inflammation and oxidative stress play fundamental roles in the pathogenesis of atherosclerosis. Myeloperoxidase has been extensively implicated as a key mediator of inflammatory and redox-dependent processes in atherosclerosis. However, the effect of synthetic myeloperoxidase inhibitors on atherosclerosis has been insufficiently studied. In this study, ApoE-/- mice were randomized to low- and high-dose INV-315 groups for 16 weeks on high-fat diet. INV-315 resulted in reduced plaque burden and improved endothelial function in response to acetylcholine. These effects occurred without adverse events or changes in body weight or blood pressure. INV-315 treatment resulted in a decrease in iNOS gene expression, superoxide production and nitrotyrosine content in the aorta. Circulating IL-6 and inflammatory CD11b+/Ly6Glow/7/4hi monocytes were significantly decreased in response to INV-315 treatment. Acute pretreatment with INV-315 blocked TNFα-mediated leukocyte adhesion in cremasteric venules and inhibited myeloperoxidase activity. Cholesterol efflux was significantly increased by high-dose INV-315 via ex-vivo reverse cholesterol transport assays. Our results suggest that myeloperoxidase inhibition may exert anti-atherosclerotic effects via inhibition of oxidative stress and enhancement of cholesterol efflux. These findings demonstrate a role for pharmacologic modulation of myeloperoxidase in atherosclerosis. © 2012 Liu et al. Source

Ying Z.,Ohio State University | Kherada N.,Ohio State University | Farrar B.,Ohio State University | Kampfrath T.,Ohio State University | And 9 more authors.
Life Sciences | Year: 2010

Aims: Alpha-lipoic acid (LA) is a commonly used dietary supplement that exerts anti-oxidant and anti-inflammatory effects in vivo and in vitro. We investigated the mechanisms by which LA may confer protection in models of established atherosclerosis. Main methods: Watanabe heritable hyperlipidemic (WHHL) rabbits were fed with high cholesterol chow for 6weeks and then randomized to receive either high cholesterol diet alone or combined with LA (20mg/kg/day) for 12weeks. Vascular function was analyzed by myography. The effects of LA on T cell migration to chemokine gradients was assessed by Boyden chamber. NF-κB activation was determined by measuring translocation and electrophoresis migration shift assay (EMSA). Key findings: LA decreased body weight by 15±5% without alterations in lipid parameters. Magnetic Resonance Imaging (MRI) analysis demonstrated that LA reduced atherosclerotic plaques in the abdominal aorta, with morphological analysis revealing reduced lipid and inflammatory cell content. Consistent with its effect on atherosclerosis, LA improved vascular reactivity (decreased constriction to angiotensin II and increased relaxation to acetylcholine and insulin), inhibited NF-κB activation, and decreased oxidative stress and expression of key adhesion molecules in the vasculature. LA reduced T cell content in atherosclerotic plaque in conjunction with decreasing ICAM and CD62L (l-selectin) expression. These effects were confirmed by demonstration of a direct effect of LA in reducing T cell migration in response to CCL5 and SDF-1 and decreasing T cell adhesion to the endothelium by intra-vital microscopy. Significance: The present findings offer a mechanistic insight into the therapeutic effects of LA on atherosclerosis. © 2009 Elsevier Inc. Source

Ying Z.,Tongji University | Ying Z.,University of Maryland, Baltimore | Chen M.,Tongji University | Chen M.,University of Maryland, Baltimore | And 11 more authors.
PLoS ONE | Year: 2016

Objective: Oxidative stress is implicated in the pathogenesis of atherosclerosis, and Nrf2 is the transcriptional factor central in cellular antioxidant responses. In the present study, we investigate the effect of a dihydrolipoic acid derivative lipoicmethylenedioxyphenol (LMDP) on the progression of atherosclerosis and test whether its effect on atherosclerosis ismediated by Nrf2. Methods and Results: Both magnetic resonance imaging (MRI) scanning and en face analysis reveal that 14 weeks of treatment with LMDP markedly reduced atherosclerotic burden in a rabbit balloon vascular injury model. Myograph analyses show decreased aortic contractile response to phenylephrine and increased aortic response to acetylcholine and insulin in LMDP-treated animals, suggesting that LMDP inhibits atherosclerosis through improving vascular function. A role of Nrf2 signaling in mediating the amelioration of vascular function by LMDP was supported by increased Nrf2 translocation into nuclear and increased expression of Nrf2 target genes. Furthermore, chemotaxis analysis with Boydem chamber shows that leukocytes isolated from LMDP-treated rabbits had reduced chemotaxis, and knock-down of Nrf2 significantly reduced the effect of LMDP on the chemotaxis of mouse macrophages. Conclusion: Our results support that LMDP has an anti-atherosclerotic effect likely through activation of Nrf2 signaling and subsequent inhibition of macrophage chemotaxis. © 2016 Ying et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Ying Z.,Ohio State University | Desikan R.,InVasc Therapeutics | Xu X.,Ohio State University | Maiseyeu A.,Ohio State University | And 5 more authors.
Journal of Lipid Research | Year: 2012

Although statin therapy is a cornerstone of current low density lipoprotein (LDL)-lowering strategies, there is a need for additional therapies to incrementally lower plasma LDL cholesterol. In this study, we investigated the effect of several methylenedioxyphenol derivatives in regulating LDL cholesterol through induction of LDL receptor (LDLR). INV-403, a modified methylenedioxyphenol derivative, increased LDLR mRNA and protein expression in HepG2 cells in a dose- and time-dependent fashion. These effects were apparent even under conditions of HMG-CoA reductase inhibition. Electrophoresis migration shift assays demonstrated that INV-403 activates SREBP2 but not SREBP1c, with immunoblot analysis showing an increased expression of the mature form of SREBP2. Knockdown of SREBP2 reduced the effect of INV-403 on LDLR expression. The activation of SREBP2 by INV-403 is partly mediated by Akt/GSK3β pathways through inhibition of phosphorylation-dependent degradation by ubiquitin-proteosome pathway. Treatment of C57Bl/6j mice with INV-403 for two weeks increased hepatic SREBP2 levels (mature form) and upregulated LDLR with concomitant lowering of plasma LDL levels. Transient expression of a LDLR promoter-reporter construct, a SRE-mutant LDLR promoter construct, and a SRE-only construct in HepG2 cells revealed an effect predominantly through a SRE-dependent mechanism. INV-403 lowered plasma LDL cholesterol levels through LDLR upregulation. These results indicate a role for small molecule approaches other than statins for lowering LDL cholesterol. Copyright © 2012 by the American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations