Entity

Time filter

Source Type

Owensboro, KY, United States

Fuqua J.L.,University of Louisville | Hamorsky K.,University of Louisville | Khalsa G.,Intrucept Biomedicine LLC | Matoba N.,University of Louisville | Palmer K.E.,University of Louisville
Plant Biotechnology Journal | Year: 2015

Application of plant-based protein expression systems for bulk production of recombinant protein pharmaceuticals is building momentum. There are considerable regulatory challenges to consider in commercialization of plant-made pharmaceuticals (PMPs), some of which are inherent to plant-production systems and others that are common with other production systems, but are new to PMPs because of the youth of the industry. In this review, we discuss our recent and ongoing experience with bulk production of the HIV microbicide candidate, griffithsin (GRFT), utilizing plant-based transient protein expression, with specific focus on areas relevant to commercial manufacturing of bulk GRFT active pharmaceutical ingredient (API). Analytical programs have been developed for the qualification and monitoring of both the expression vector system and the API detailing our experience and plans for each. Monitoring postpurification protein modifications are discussed in relation to stability and safety programs. Expression, processing and analytics programs are associated with increased manufacturing costs in current good manufacturing practice (cGMP) production because of the required qualification testing. The impact of these costs on the overall cost of goods is particularly relevant to GRFT manufacturing because GRFT, as an HIV microbicide, is most needed in populations at high risk for HIV exposure in resource-poor countries. Consequently, GRFT for microbicide applications is a very cost-sensitive recombinant PMP. We have therefore emphasized maintaining a low cost of goods. We provide a review of the literature on the economics of PMPs with various expression systems and how they may impact production costs and complexity. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd. Source


Barton C.,University of Louisville | Kouokam J.C.,University of Louisville | Kouokam J.C.,Owensboro Cancer Research Program | Lasnik A.B.,University of Louisville | And 10 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2014

Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. © 2014, American Society for Microbiology. All Rights Reserved. Source


Tuse D.,Intrucept Biomedicine LLC | Tu T.,University of California at Davis | McDonald K.A.,University of California at Davis
BioMed Research International | Year: 2014

Production of recombinant biologics in plants has received considerable attention as an alternative platform to traditional microbial and animal cell culture. Industrially relevant features of plant systems include proper eukaryotic protein processing, inherent safety due to lack of adventitious agents, more facile scalability, faster production (transient systems), and potentially lower costs. Lower manufacturing cost has been widely claimed as an intuitive feature of the platform by the plant-made biologics community, even though cost information resides within a few private companies and studies accurately documenting such an advantage have been lacking. We present two technoeconomic case studies representing plant-made enzymes for diverse applications: human butyrylcholinesterase produced indoors for use as a medical countermeasure and cellulases produced in the field for the conversion of cellulosic biomass into ethanol as a fuel extender. Production economics were modeled based on results reported with the latest-generation expression technologies on Nicotiana host plants. We evaluated process unit operations and calculated bulk active and per-dose or per-unit costs using SuperPro Designer modeling software. Our analyses indicate that substantial cost advantages over alternative platforms can be achieved with plant systems, but these advantages are molecule/product-specific and depend on the relative cost-efficiencies of alternative sources of the same product. © 2014 Daniel Tusé et al. Source

Discover hidden collaborations