Entity

Time filter

Source Type

Apeldoorn, Netherlands

Van Twillert I.,National Institute for Public Health and the Environment RIVM | Van Gaans-van Den Brink J.A.M.,National Institute for Public Health and the Environment RIVM | Poelen M.C.M.,National Institute for Public Health and the Environment RIVM | Helm K.,National Institute for Public Health and the Environment RIVM | And 6 more authors.
PLoS ONE | Year: 2014

For a better understanding of the maintenance of immune mechanisms to Bordetella pertussis (Bp) in relation to age, we investigated the dynamic range of specific B cell responses in various age-groups at different time points after a laboratory confirmed pertussis infection. Blood samples were obtained in a Dutch cross sectional observational study from symptomatic pertussis cases. Lymphocyte subpopulations were phenotyped by flowcytometry before and after culture. Memory B (Bmem) cells were differentiated into IgG antibody secreting cells (ASC) by polyclonal stimulation and detected by an ELISPOT assay specific for pertussis antigens pertussis toxin (Ptx), filamentous haemagglutinin (FHA) and pertactin (Prn). Bp antigen specific IgG concentrations in plasma were determined using multiplex technology. The majority of subjects having experienced a clinical pertussis episode demonstrated high levels of both Bp specific IgG and Bmem cell levels within the first 6 weeks after diagnosis. Significantly lower levels were observed thereafter. Waning of cellular and humoral immunity to maintenance levels occurred within 9 months after antigen encounter. Age was found to determine the maximum but not base-line frequencies of Bmem cell populations; higher levels of Bmem cells specific for Ptx and FHA were reached in adults and (pre-) elderly compared to under-fours and schoolchildren in the first 6 weeks after Bp exposure, whereas not in later phases. This age effect was less obvious for specific IgG levels. Nonetheless, subjects' levels of specific Bmem cells and specific IgG were weakly correlated. This is the first study to show that both age and closeness to last Bp encounter impacts the size of Bp specific Bmem cell and plasma IgG levels. © 2014 van Twillert et al.


Resik S.,Institute Pedro Kouri | Tejeda A.,Provincial Health Office | Fonseca M.,Institute Pedro Kouri | Alemani N.,Provincial Health Office | And 8 more authors.
Vaccine | Year: 2014

Background: To ensure that developing countries have the option to produce inactivated poliovirus vaccine (IPV), the Global Polio Eradication Initiative has promoted the development of an IPV using Sabin poliovirus strains (Sabin IPV). This trial assessed the reactogenicity and immunogenicity of Sabin IPV and adjuvanted Sabin IPV in healthy adults in Cuba. Methods: This is a randomized, controlled phase I trial, enrolling 60 healthy (previously vaccinated) male human volunteers, aged 19-23 years to receive one dose of either Sabin IPV (20:32:64 DU/dose), adjuvanted Sabin IPV (10:16:32 DU/dose), or conventional Salk IPV (40:8:32 DU/dose). The primary endpoint for reactogenicity relied on monitoring of adverse events. The secondary endpoint measured boosting immune responses (i.e. seroconversion or 4-fold rise) of poliovirus antibody, assessed by neutralization assays. Results: Sixty subjects fulfilled the study requirements. No serious adverse events reported were attributed to trial interventions during the 6-month follow-up period. Twenty-eight days after vaccination, boosting immune responses against poliovirus types 1-3 were between 90% and 100% in all vaccination groups. There was a more than 6-fold increase in median antibody titers between pre- and post-vaccination titers in all vaccination groups. Discussion: Both Sabin IPV and adjuvanted Sabin IPV were well tolerated and immunogenic against all poliovirus serotypes. This result suggests that the aluminum adjuvant may allow a 50% (or higher) dose reduction. © 2014.


Raeven R.H.M.,Intravacc | Raeven R.H.M.,Leiden Academic Center for Drug Research | Van Der Maas L.,Intravacc | Tilstra W.,Intravacc | And 10 more authors.
Journal of Proteome Research | Year: 2015

The current resurgence of whooping cough is alarming, and improved pertussis vaccines are thought to offer a solution. Outer membrane vesicle vaccines (omvPV) are potential vaccine candidates, but omvPV-induced humoral responses have not yet been characterized in detail. The purpose of this study was to determine the antigen composition of omvPV and to elucidate the immunogenicity of the individual antigens. Quantitative proteome analysis revealed the complex composition of omvPV. The omvPV immunogenicity profile in mice was compared to those of classic whole cell vaccine (wPV), acellular vaccine (aPV), and pertussis infection. Pertussis-specific antibody levels, antibody isotypes, IgG subclasses, and antigen specificity were determined after vaccination or infection by using a combination of multiplex immunoassays, two-dimensional immunoblotting, and mass spectrometry. The vaccines and infection raised strong antibody responses, but large quantitative and qualitative differences were measured. The highest antibody levels were obtained by omvPV. All IgG subclasses (IgG1/IgG2a/IgG2b/IgG3) were elicited by omvPV and in a lower magnitude by wPV, but not by aPV (IgG1) or infection (IgG2a/b). The majority of omvPV-induced antibodies were directed against Vag8, BrkA, and LPS. The broad and balanced humoral response makes omvPV a promising pertussis vaccine candidate. © 2015 American Chemical Society.


Ten Have R.,Intravacc | Reubsaet K.,Intravacc | Van Herpen P.,Intravacc | Kersten G.,Intravacc | And 3 more authors.
PLoS ONE | Year: 2016

Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freezedrying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. © 2016 ten Have et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Raeven R.H.M.,Intravacc | Raeven R.H.M.,Leiden Academic Center for Drug Research | Brummelman J.,National Institute for Public Health and the Environment RIVM | Pennings J.L.A.,National Institute for Public Health and the Environment RIVM | And 11 more authors.
PLoS ONE | Year: 2014

Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/ Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses. © 2014 Raeven et al.

Discover hidden collaborations