Auburn, AL, United States
Auburn, AL, United States

Time filter

Source Type

Thermal management systems for high energy density batteries, particularly arrays of such batteries, and methods of making and using thereof are described herein. The system includes one or more thermal conductive microfibrous media with one or more phase change materials dispersed within the microfibrous media and one or more active cooling structures. Energy storage packs or arrays which contain a plurality of energy storage cells and the thermal management system are also described. Further described are thermal or infrared shielding blankets or barriers comprising one or more thermal conductive microfibrous media comprising one or more phase change materials dispersed within the microfibrous media.


Improved methods for preparing highly porous mesh media and loading functional particles into the media are described herein. The highly porous media can be used as supports for catalyst materials for a variety of applications, such as desulfurization. Pre-manufactured catalyst can be loaded into the sintered open media. Thus, the contamination issues associated wetlay paper making and pre-oxidation, the deactivation issues associated with the sintering and pre-oxidation steps, and the corrosion issues associated with the catalyst formation step can be avoided. The methods described herein result in the formation of highly porous media with functional particles immobilized inside.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2013

Microfibrous media (MFM) composed of sintered micron diameter copper fibers will be evaluated for its ability to transfer heat from cylindrical cell arrays (batteries and capacitors) to cooling coil and heat transfer surfaces. The void volume of the MFM will be from 70 to 90% and the resulting porosity filled with a suitable phase change material (PCM) as an added (and intimately contacted) thermal buffer. Preliminary calculations and data indicate that a 30 vol.% MFM filled with 70 vol% PCM will have a thermal conductivity of 60 W/m-K, an enthalpy capacity between 25 and 60C of 249 KJ/liter, and due to its compliant nature an interfacial heat transfer coefficient of 420 W/m2-K. Compared to other documented technologies this combination of properties is superior for both brief periods of high rate discharge in a near adiabatic fashion (with rapid thermal recovery) and also extended duration applications at high average power and thermal dissipation levels. The porous media is cost effectively manufactured on high speed paper machines and readily packaged between battery arrays and heat transfer surfaces. The approach is suitably robust for military applications, maintains appropriate cell temperatures, is mass and volume efficient, and can be easily packaged to avoid shorts.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase II | Award Amount: 719.08K | Year: 2013

Microfibrous entrapped catalysts (MFECs) made of a thermally conductive fibrous structure containing micron-sized metal fibers will be used to help the Navy to achieve its Great Green Fleet Initiative milestones. MFEC based Fischer-Tropsch Synthesis (FTS) will convert biomass and/or bio-based carbon resources into high-quality liquid fuels with a ca. 50% reduction in Lifetime Green Gas Emissions (LGGE) compared with current biorefining processes. In the preceding Phase II effort, IntraMicron demonstrated that MFECs provided a 250-fold increase in effective thermal conductivity relative to packed beds, generating a near-isothermal temperature profile inside a 1.5"ID FTS reactor. Jet fuel was produced at the maximum theoretical selectivity while meeting the desired production rate specified by ONR. By simultaneously enhancing heat and mass transfer, MFECs permit the use of reactor diameters far greater than conventional systems without sacrificing the volumetric fuel production rate and jet fuel selectivity. This enables FTS process intensification with significant CAPEX and OPEX reductions and allows green fuels to be produced at an acceptable price level for the Navy. Modular FTS reactors can be installed for fuel production at different scales, and they can be used as stand-alone systems or combined with current biorefineries for greener fuel production.


Patent
IntraMicron, Inc. | Date: 2013-03-13

Methods for improving heat transfer at the interface between the internal reactor wall and mesh media containing microfibrous entrapped catalysts (MFECs) and/or microfibrous entrapped sorbents (MFESs) are described herein. Improved (e.g., more rapid) heat transfer can be achieved using a variety of approaches including increasing the contacting area of the interface between the mesh media and the reactor wall so that more contacting points are formed, enhancing the contacting efficiency at the contacting points between the mesh media and the reactor wall, increasing the number of contact points between the mesh media and the reactor wall using fine fibers, and combinations thereof.


Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content. Due to the reduced catalyst cost, anticipated long catalyst life and reduced adsorbent consumption, the catalysts described herein are expected to provide a 20-60% reduction in annual desulfurization cost for biogas with sulfur contents ranges from 1000-5000 ppmv compared with the best adsorbent approach.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 748.97K | Year: 2013

This Small Business Innovation Research Phase II project proposes a fundamentally new means for biogas/landfill gas desulfurization that produces negligible waste, allows for sulfur recovery/recycling, and provides annualized operating costs that are fraction of current practice. The proposed process consists of two synergistic components: a novel oxidative sulfur removal (OSR) catalytic reactor that produces elemental sulfur and a polishing adsorbent bed equipped with a unique in-situ bed-life sensor (BLS) that permits optimal adsorbent bed operation and cycling. The OSR catalyst has high contaminant tolerance, high selectivity to elemental sulfur, high activity, and low cost. After the OSR reaction and sulfur condensation, the outlet hydrogen sulfide concentration can be reduced to below 5 ppm at a conversion above 90%. If a polishing adsorbent bed is needed to achieve lower sulfur levels, it will be outfitted with an in-situ BLS that provides real-time adsorbent capacity monitoring to maximize adsorbent utilization. This approach is particularly effective for biogas/landfill gas streams with severe sulfur concentration variations; it reduces annualized operating costs by 50% to 65%, while reducing both solid waste generation (adsorbent consumption) and footprint by a factor of 10 - 30. The Broader impact/commercial potential of this project, if successful, will drastically change the landscape of biogas/landfill gas utilization by improving desulfurization economics and reducing desulfurization solid waste generation. The low-cost, environmentally benign nature of this process will not only improve the desulfurization efficiency of typical biogas sources, but it will facilitate the development of small-scale and/or high-sulfur-content biogas/landfill gas sources for renewable fuel and energy applications. Moreover, the proposed approach can eliminate large sulfur adsorbent beds for almost all current biogas/landfill gas applications with high outlet sulfur thresholds (i.e. direct heating, power generation and combined heat and power), and shrink the size of desulfurization units for advanced applications with low outlet sulfur thresholds (i.e. fuel cells and GTL). Its small footprint and scalability make this technology favorable for mobile, small-scale applications. Besides biogas/landfill gas, other gas streams including natural gas, associated gas, petroleum gas, and syngas from a variety of sources can be desulfurized using this process. BTL, CTL, GTL, and renewable electric power generation will benefit from the success of this innovation. The proposed innovation directly addresses the energy independence and security of our nation (EISA 2007).


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 169.95K | Year: 2012

This Small Business Innovation Research Phase I project proposes a fundamentally new means for biogas (landfill gas) desulfurization that produces less waste, allows recycle of recovered sulfur, and provides annualized operating costs a fraction of current practice. Inexpensive biogas cleanup is required for subsequent combustion, fuel cell usage, or conversion to liquid fuels. The costs of gas clean up and spent sorbent disposal currently dictate the cost of biogas conversion to clean energy. The proposed two-stage process is a synergistic combination of: a novel Oxidative Sulfur Removal (OSR) catalyst formulation producing elemental sulfur; a wide temperature range regenerable downstream polishing sorbent; and a unique in situ sensor permitting optimal adsorbent bed operation and cycling. Current technology produces 125 tons of spent adsorbent for a 500kWe biogas combustor. Ironically, this adsorbent must be landfilled. The proposed process could reduce adsorbent waste 7-20 times and yields elemental sulfur that can be recycled into the fertilizer industry. The OSR catalyst is anticipated to be contaminant-tolerant in practice. Major innovations of the proposed approach include: long-life OSR catalyst, high selectivity to elemental sulfur, high activity and low-cost catalyst, real-time in situ adsorbent capacity monitoring to maximize material utilization and further reduce costs.

The broader impact/commercial potential of this project includes the greatly enhanced ability to utilize biogas for alternative and renewable energy production facilities with significantly reduced carbon and waste footprints and process costs. The proposed process is thermodynamically efficient and readily scalable to a variety of locations and capacities. The proposed process has the ability to remove sulfur contaminants to very low levels thereby enabling catalytic conversion of biogas to higher value liquid fuels and chemicals. Recovered elemental sulfur can be utilized directly as a fertilizer additive. In short, the proposed innovation permits biogas desulfurization and subsequent usage in a more economic and environmentally friendly manner than current approaches. The proposed process is also capable of cleaning biogas and other gas sources with high sulfur contents (ca. 1-3%) without a significant increase in process costs. Besides biogas, other gas streams including natural gas, frac gas, petroleum gas, and syngas from a variety of sources can be desulfurized. Therefore, BTL, CTL, GTL, and renewable electric power generation can be impacted by the success of this innovation.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase II | Award Amount: 999.97K | Year: 2014

Building on success in Phase I, this proposal focuses on the theoretical analysis, system level optimization, manufacturability, TRL progression and prototypic demonstration of IntraMicron's Enhanced Battery Pack (IEBP). IEBP facilitates rapid cooling of


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE II | Award Amount: 898.76K | Year: 2013

This Small Business Innovation Research Phase II project proposes a fundamentally new means for biogas/landfill gas desulfurization that produces negligible waste, allows for sulfur recovery/recycling, and provides annualized operating costs that are fraction of current practice. The proposed process consists of two synergistic components: a novel oxidative sulfur removal (OSR) catalytic reactor that produces elemental sulfur and a polishing adsorbent bed equipped with a unique in-situ bed-life sensor (BLS) that permits optimal adsorbent bed operation and cycling. The OSR catalyst has high contaminant tolerance, high selectivity to elemental sulfur, high activity, and low cost. After the OSR reaction and sulfur condensation, the outlet hydrogen sulfide concentration can be reduced to below 5 ppm at a conversion above 90%. If a polishing adsorbent bed is needed to achieve lower sulfur levels, it will be outfitted with an in-situ BLS that provides real-time adsorbent capacity monitoring to maximize adsorbent utilization. This approach is particularly effective for biogas/landfill gas streams with severe sulfur concentration variations; it reduces annualized operating costs by 50% to 65%, while reducing both solid waste generation (adsorbent consumption) and footprint by a factor of 10 - 30.

The Broader impact/commercial potential of this project, if successful, will drastically change the landscape of biogas/landfill gas utilization by improving desulfurization economics and reducing desulfurization solid waste generation. The low-cost, environmentally benign nature of this process will not only improve the desulfurization efficiency of typical biogas sources, but it will facilitate the development of small-scale and/or high-sulfur-content biogas/landfill gas sources for renewable fuel and energy applications. Moreover, the proposed approach can eliminate large sulfur adsorbent beds for almost all current biogas/landfill gas applications with high outlet sulfur thresholds (i.e. direct heating, power generation and combined heat and power), and shrink the size of desulfurization units for advanced applications with low outlet sulfur thresholds (i.e. fuel cells and GTL). Its small footprint and scalability make this technology favorable for mobile, small-scale applications. Besides biogas/landfill gas, other gas streams including natural gas, associated gas, petroleum gas, and syngas from a variety of sources can be desulfurized using this process. BTL, CTL, GTL, and renewable electric power generation will benefit from the success of this innovation. The proposed innovation directly addresses the energy independence and security of our nation (EISA 2007).

Loading IntraMicron, Inc. collaborators
Loading IntraMicron, Inc. collaborators