Time filter

Source Type

Marech I.,Interventional Radiology Unit with Integrated Section of Translational Medical Oncology | Zizzo N.,University of Bari | Gadaleta C.,University of Bari | Introna M.,University of Bari | And 3 more authors.
Critical Reviews in Oncology/Hematology | Year: 2014

Masitinib mesylate (AB1010) is a novel potent and selective tyrosine kinase inhibitor, targeting mainly wild-type and mutated c-Kit receptor (c-KitR), Platelet Derived Growth Factor Receptor-alfa/beta (PDGFRa/ß), Lymphocyte-specific kinase (Lck), Lck/Yes-related protein (LYn), Fibroblast Growth Factor Receptor 3 (FGFR3) and Focal Adhesion Kinase (FAK). It is the first anticancer therapy approved in veterinary medicine for the treatment of unresectable canine mast cell tumors (CMCTs), harboring activating c-KitR mutations, at dose of 12.5. mg/kg once daily. Considering its anti-proliferative action, principally given by inhibiting the MCs c-KitR anti-angiogenic pathway that leads cancer progression, and its role as chemosensitizer, masitinib is under clinical investigation in several human malignancies (Gastro-Intestinal Stromal Tumors, acute myeloid leukemia, systemic mastocytosis, pancreatic cancer, multiple myeloma, non-small cell lung cancer, melanoma, ovarian and prostate cancer), which are characterized by similar canine c-KIT proto-oncogene mutations. Here, we analyze masitinib structure activity, its pharmacokinetics compared to imatinib, the c-KitR pathway referring to the most frequent c-KIT mutations sensitive or resistant to this novel drug compared to imatinib, and masitinib safety profile. We, also, explore preclinical and clinical (completed and ongoing) trials with the aim to emphasize as this recent anti-angiogenic therapy, at first approved in CMCTs and, currently in development for the treatment of several human neoplasms, could be represent a milestone in translational oncology, in which the murine experimental model of cancer research could be integrated by canine spontaneous tumor model. © 2013 Elsevier Ireland Ltd.


Marech I.,Interventional Radiology Unit with Integrated Section of Translational Medical Oncology | Ammendola M.,University of Catanzaro | Sacco R.,University of Catanzaro | Capriuolo G.S.,Section of Animal Health | And 9 more authors.
BMC Cancer | Year: 2014

Background: Tryptase is a serine protease released from mast cells that plays a role in tumor angiogenesis. In this study we aimed to evaluate serum tryptase levels in 105 female early breast cancer patients before (STLBS) and after (STLAS) radical surgical resection, mast cell density positive to tryptase (MCDPT) and microvascular density (MVD).Methods: STLBS and STLAS were assessed using the UniCAP Tryptase Fluoroenzyme immunoassay. Tumor sections were immunostained with a primary anti-tryptase antibody and an anti-CD-34 antibody by means of immunohistochemistry.Results: The mean ± 1 standard deviation STLBS and STLAS was 7.18 ± 2.63 μg/L, and 5.13 ± 2.21 respectively and a significant difference between mean levels was found (p = 0.0001) by student t-test. A strong correlation between STLBS and MVD (r = 0.81, p = 0.0001); STLBS and MCDPT (r = 0.69, p = 0.003); and MCDPT and MVD (r = 0.77; p = 0.0001) was found.Conclusions: Results demonstrated higher STLBS in breast cancer patients, indicating an involvement of MC tryptase in breast cancer angiogenesis. Therefore, serum tryptase levels may play a role as a novel surrogate angiogenic marker predictive of response to radical surgery in breast cancer patients. In this patients setting, it's intriguing to hypothesize that tryptase inhibitors might be evaluated in clinical trials. © 2014 Marech et al.; licensee BioMed Central Ltd.


Ammendola M.,University of Catanzaro | Sacco R.,University of Catanzaro | Sammarco G.,University of Catanzaro | Luposella M.,San Giovanni Of Dio Hospital | And 4 more authors.
Transfusion Medicine and Hemotherapy | Year: 2016

Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials. © 2016 S. Karger GmbH, Freiburg.


PubMed | Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, San Giovanni Of Dio Hospital and University of Catanzaro
Type: Journal Article | Journal: Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie | Year: 2016

Mast cells (MCs) are cells that originate in the bone marrow from pluripotent CD34+ hematopoietic stem cells. Precursors of MCs migrate through the circulation to their target tissues, completing their maturation process into granulated cells under the influence of several microenvironment growth factors. The most important of these factors is the ligand for the c-Kit receptor (c-Kit-R) namely stem cell factor (SCF), secreted mainly by fibroblasts and endothelial cells (ECs). SCF also regulates development, survival and de novo proliferation of MCs. It has already been demonstrated that gain-of-function mutations of gene c-Kit encoding c-Kit-R result in the development of some tumors. Furthermore, MCs are able also to modulate both innate and adaptive immune response and to express the high-affinity IgE receptor following IgE activation. Among the other IgE-independent MC activation mechanisms, a wide variety of other surface receptors for cytokines, chemokines, immunoglobulins, and complement are also described. Interestingly, MCs can stimulate angiogenesis by releasing of several pro-angiogenic cytokines stored in their cytoplasm. Studies published in the last year suggest that angiogenesis stimulated by MCs may play an important role in tumor growth and progression. Here, we aim to focus several biological features of MCs and to summarize new anti-cancer MC-targeted strategies with potential translation in human clinical trials.


PubMed | Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, University of Bari, University of Bologna, University of Strasbourg and 2 more.
Type: | Journal: OncoTargets and therapy | Year: 2016

Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase phosphorylation. Nevertheless, no data are available concerning the relationship between MC density positive to tryptase (MCDPT), endothelial cells positive to PAR-2 forming microvascular density (PAR-2-MVD), and classical MVD (C-MVD) in hepatocellular carcinoma (HCC) angiogenesis. This study analyzed the correlation between MCDPT, PAR-2-MVD, and C-MVD, each correlated to the others and to the main clinicopathological features, in early HCC patients who underwent surgery.A series of 53 HCC patients with early stage (stage 0 according to the Barcelona Clinic Liver Cancer Staging Classification) were selected and then underwent surgery. Tumor tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCDPT, PAR-2-MVD, and C-MVD.A significant correlation between MCDPT, PAR-2-MVD, and C-MVD groups, each correlated to the others, was found by Pearson t-test analysis (r ranged from 0.67 to 0.81; P-value ranged from 0.01 to 0.03). No other significant correlation was found.Our in vivo pilot data suggest that MCDPT and PAR-2-MVD may play a role in HCC angiogenesis and could be further evaluated as a target of antiangiogenic therapy.


PubMed | University of Catanzaro, Pharmacy Unit, Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Animal Health Unit and University of Bari
Type: | Journal: BioMed research international | Year: 2014

Canine cutaneous mast cell tumour (CMCT) is a c-Kit driven tumour sharing similar c-Kit aberrations found in human gastrointestinal stromal tumour. CMCT is classified into three forms: well- (G1), intermediately (G2) (more benign diseases), and poorly (G3) differentiated (malignant) forms. We assess a correlation between c-Kit status, grading, and angiogenesis in CMCTs to explore their potential significance in humans. C-Kit receptor (c-KitR) expression, microvascular density (MVD), and mast cell granulated and degranulated status density (MCGD and MCDD, resp.) were analyzed in 97 CMCTs, by means of histochemistry, immunohistochemistry double staining, and image analysis system. Data showed that predominantly diffuse cytoplasmic- and predominantly focal paranuclear- (Golgi-like) c-Kit protein (PDC-c-Kit and PFP-c-Kit, resp.) expression correlate with high MVD, G3 histopathological grade, and MCDD. Moreover, predominant cell membrane-c-KitR (PCM-c-KitR) expression status correlates with low MVD, G1-G2 histopathological grade, and MCGD. These findings underline the key role of c-Kit in the biopathology of canine MCTs, indicating a link between aberrant c-Kit expression, increased angiogenesis, and higher histopathological grade. CMCT seems to be a model to study contributions of c-Kit activated MCs in tumour angiogenesis and to evaluate the inhibition of MCs activation by means of c-Kit tyrosine kinase inhibitors, currently translated in humans.


PubMed | Surgery Unit, Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Surgical Oncology Unit and University of Catanzaro
Type: | Journal: Gastroenterology research and practice | Year: 2013

Background. Angiogenesis is a complex process involved in both growth and progression of several human and animal tumours. Tryptase is a serin protease stored in mast cells granules, which plays a role in tumour angiogenesis. Mast cells (MCs) can release tryptase following c-Kit receptor (c-KitR) activation. Method. In a series of 25 gastric cancer patients with stage T3N2-3M0 (by AJCC for Gastric Cancer 7th Edition), immunohistochemistry and image analysis methods were employed to evaluate in the tumour tissue the correlation between the number of mast cells positive to tryptase (MCPT), c-KitR expressing cells (c-KitR-EC), and microvascular density (MVD). Results. Data demonstrated a positive correlation between MCPT, c-KitR-EC, and MVD to each other. In tumour tissue the mean number of MCPT was 15, the mean number of c-KitR-EC was 20, and the mean number of MVD was 20. The Pearson test correlating MCPT and MVD, c-KitR-EC and MVD was significantly (r = 0.64, P = 0.001; r = 0.66, P = 0.041, resp.). Conclusion. In this pilot study, we suggest that MCPT and c-KitR-EC play a role in gastric cancer angiogenesis, so we think that several c-KitR or tryptase inhibitors such as gabexate mesilate and nafamostat mesilate might be evaluated in clinical trials as a new antiangiogenetic approach.


Ranieri G.,Interventional Radiology Unit with Integrated Section of Translational Medical Oncology | Gadaleta-Caldarola G.,Interventional Radiology Unit with Integrated Section of Translational Medical Oncology | Goffredo V.,Interventional Radiology Unit with Integrated Section of Translational Medical Oncology | Patruno R.,University of Bari | And 4 more authors.
Current Medicinal Chemistry | Year: 2012

Angiogenesis and signaling through the RAS/RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade have been reported to play important roles in the development of hepatocellular carcinoma (HCC). Sorafenib (Nexavar), a novel bi-aryl urea BAY 43-9006, is an orally administered multikinase inhibitor with activity against RAS/RAF kinases multikinase inhibitor with activity against RAFkinases and several receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), FLT3, Ret, and c-Kit. It is involved in angiogenic pathway and cell proliferation. Sorafenib has demonstrated potent anti-tumor activity in in vitro studies, preclinical xenograft models of different tumor types and human clinical trials. This review summarizes the history of sorafenib from its discovery by the medicinal chemistry approach through to clinical development and ongoing trials on the combination between sorafenib and trans-arterial chemoembolization (TACE) in HCC patients. © 2012 Bentham Science Publishers.


Ammendola M.,University of Catanzaro | Ammendola M.,Surgery Unit | Sacco R.,University of Catanzaro | Sammarco G.,University of Catanzaro | And 9 more authors.
Gastroenterology Research and Practice | Year: 2014

Background. Literature data suggest that cells such as mast cells (MCs), are involved in angiogenesis. MCs can stimulate angiogenesis by releasing of several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor. Nevertheless few data are available concerning the role of MCs positive to tryptase in primary pancreatic cancer angiogenesis. This study analyzed MCs and angiogenesis in primary tumour tissue from patients affected by pancreatic ductal adenocarcinoma (PDAC). Method. A series of 31 PDAC patients with stage T2-3N0-1M0 (by AJCC for Pancreas Cancer Staging 7th Edition) was selected and then underwent surgery. Tumour tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCs positive to tryptase (MCDPT), area occupied by MCs positive to tryptase (MCAPT), microvascular density (MVD), and endothelial area (EA). The above parameters were related to each other and to the main clinicopathological features. Results. A significant correlation between MCDPT, MCAPT, MVD, and EA group was found by Pearson's t-test analysis (r ranged from 0.69 to 0.81; P value ranged from 0.001 to 0.003). No other significant correlation was found. Conclusion. Our pilot data suggest that MCs positive to tryptase may play a role in PDAC angiogenesis and they could be further evaluated as a novel tumour biomarker and as a target of antiangiogenic therapy. © 2014 Michele Ammendola et al.


PubMed | Surgery Unit, Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, University of Bari and University of Catanzaro
Type: | Journal: Gastroenterology research and practice | Year: 2014

Background. Literature data suggest that cells such as mast cells (MCs), are involved in angiogenesis. MCs can stimulate angiogenesis by releasing of several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor. Nevertheless few data are available concerning the role of MCs positive to tryptase in primary pancreatic cancer angiogenesis. This study analyzed MCs and angiogenesis in primary tumour tissue from patients affected by pancreatic ductal adenocarcinoma (PDAC). Method. A series of 31 PDAC patients with stage T2-3N0-1M0 (by AJCC for Pancreas Cancer Staging 7th Edition) was selected and then underwent surgery. Tumour tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCs positive to tryptase (MCDPT), area occupied by MCs positive to tryptase (MCAPT), microvascular density (MVD), and endothelial area (EA). The above parameters were related to each other and to the main clinicopathological features. Results. A significant correlation between MCDPT, MCAPT, MVD, and EA group was found by Pearsons t-test analysis (r ranged from 0.69 to 0.81; P value ranged from 0.001 to 0.003). No other significant correlation was found. Conclusion. Our pilot data suggest that MCs positive to tryptase may play a role in PDAC angiogenesis and they could be further evaluated as a novel tumour biomarker and as a target of antiangiogenic therapy.

Loading Interventional Radiology Unit with Integrated Section of Translational Medical Oncology collaborators
Loading Interventional Radiology Unit with Integrated Section of Translational Medical Oncology collaborators