Entity

Time filter

Source Type


Schauer S.,Medical University of Vienna | Jakwerth S.,Medical University of Vienna | Bliem R.,Medical University of Vienna | Bliem R.,Armament and Defence Technology Agency | And 13 more authors.
Environmental Microbiology | Year: 2015

In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD-FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26×106 V. cholerae per L in Neusiedler See and 7.59×107 V. cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V. cholerae. In winter, V. cholerae was not culturable but could be quantified at all sites with CARD-FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V. cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.


Kittinger C.,Medical University of Graz | Lipp M.,Medical University of Graz | Baumert R.,Medical University of Graz | Folli B.,Medical University of Graz | And 11 more authors.
Frontiers in Microbiology | Year: 2016

Spread and persistence of antibiotic resistance pose a severe threat to human health, yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3), the world's biggest river research expedition of its kind in 2013, to analyse samples originating from different sampling points along the whole length of the river. Due to its high clinical relevance, we concentrated on the characterization of Pseudomonas spp. and evaluated the resistance profiles of Pseudomonas spp. which were isolated from eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%) isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas fluorescens, all other Pseudomonas species were represented by less than five isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all isolated Pseudomonas species showed resistance to at least one out of 10 tested antibiotics. The most common resistance was against meropenem (30.4%/158 isolates) piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16 isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one resistant isolate could be detected. Sampling points from the upper stretch of the River Danube showed more resistant isolates than downriver. Our results suggest that antibiotic resistance can be acquired by and persists even in Pseudomonas species that are normally not in direct contact with humans. A possible scenario is that these bacteria provide a reservoir of antibiotic resistance genes that can spread to related human pathogens by horizontal gene transfer. © 2016 Kittinger, Lipp, Baumert, Folli, Koraimann, Toplitsch, Liebmann, Grisold, Farnleitner, Kirschner and Zarfel.


Stadler P.,Vienna University of Technology | Bloschl G.,Vienna University of Technology | Vogl W.,Vienna Water Monitoring | Koschelnik J.,Vienna Water Monitoring | And 12 more authors.
Water Research | Year: 2016

Detection of enzymatic activities has been proposed as a rapid surrogate for the culture-based microbiological pollution monitoring of water resources. This paper presents the results of tests on four fully automated prototype instruments for the on-site monitoring of beta-d-glucuronidase (GLUC) activity. The tests were performed on sediment-laden stream water in the Hydrological Open Air Laboratory (HOAL) during the period of March 2014 to March 2015. The dominant source of faecal pollution in the stream was swine manure applied to the fields within the catchment. The experiments indicated that instrument pairs with the same construction design yielded highly consistent results (R2 = 0.96 and R2 = 0.94), whereas the results between different designs were less consistent (R2 = 0.71). Correlations between the GLUC activity measured on-site and culture-based Escherichia coli analyses over the entire study period yielded R2 = 0.52 and R2 = 0.47 for the two designs, respectively. The correlations tended to be higher at the event scale. The GLUC activity was less correlated with suspended sediment concentrations than with E. coli, which is interpreted in terms of indicator applicability and the time since manure application. The study shows that this rapid assay can yield consistent results over a long period of on-site operation in technically challenging habitats. Although the use of GLUC activity as a proxy for culture-based assays could not be proven for the observed habitat, the study results suggest that this biochemical indicator has high potential for implementation in early warning systems. © 2016 The Authors.


Kittinger C.,Medical University of Graz | Baumert R.,Medical University of Graz | Folli B.,Medical University of Graz | Lipp M.,Medical University of Graz | And 7 more authors.
Water (Switzerland) | Year: 2015

The Joint Danube Survey 3, carried out in 2013 was the world's biggest river research expedition of its kind. The course of the second largest river of Europe passes large cities like Vienna, Budapest and Belgrade and is fed from many tributaries like Inn, Thisza, Drava, Prut, Siret and Arge?. During the 6 weeks of shipping the 2375km downstream the River Danube from Germany to the Black Sea an enormous number of water samples were analyzed and collected. A wide spectrum of scientific disciplines cooperated in analyzing the River Danube waters. For toxicological analysis, water samples were collected on the left, in the middle, and on the right side of the river at 68 JDS3 sampling points and frozen until the end of the Danube survey. All samples were analyzed with two in vitro bioassays tests (umuC and MTS). Testing umuC without S9 activation and MTS test did not show positive signals. But umuC investigations of the water samples came up with toxic signals on two stretches, when activated with S9 enzymes. The override of the limiting value of the umuC investigation with prior S9 activation started downstream Vienna (Austria) and was prolonged until Dunaföldvar (Hungary). This stretch of the River Danube passes a region that is highly industrialized, intensively used for agricultural purposes and also highly populated (Vienna, Bratislava and Budapest). The elevated values may indicate these influences. © 2015 by the authors.


Mayer R.E.,Vienna University of Technology | Mayer R.E.,Interuniversity Cooperation Center for Water and Health | Vierheilig J.,Vienna University of Technology | Vierheilig J.,Interuniversity Cooperation Center for Water and Health | And 13 more authors.
Applied and Environmental Microbiology | Year: 2015

Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources. © 2015, American Society for Microbiology.

Discover hidden collaborations