Entity

Time filter

Source Type

Washington, DC, United States

Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 1.10M | Year: 2015

East Africa (EA) has one of the worlds fastest growing populations, with maxima around water-bodies and rapid urbanisation. Climate change is adding to existing problems increasing vulnerability of the poorest. HyCRISTAL is driven by EA priorities. EA communities rely on rainfall for food via agriculture. EAs inland lakes are rain-fed and provide water, power and fisheries. For EAs growing cities, climate impacts on water resources will affect water supply & treatment. HyCRISTAL will therefore operate in both urban & rural contexts. Change in water availability will be critical for climate-change impacts in EA, but projections are highly uncertain for rain, lakes, rivers and groundwater, and for extremes. EA Long-Rains are observed to be decreasing; while models tend to predict an increase (the EA Climate paradox) although predictions are not consistent. This uncertainty provides a fundamental limit on the utility of climate information to inform policy. HyCRISTAL will therefore make best use of current projections to quantify uncertainty in user-relevant quantities and provide ground-breaking research to understand and reduce the uncertainty that currently limits decision making. HyCRISTAL will work with users to deliver world-leading climate research quantifying uncertainty from natural variability, uncertainty from climate forcings including those previously unassessed, and uncertainty in response to these forcings; including uncertainties from key processes such as convection and land-atmopshere coupling that are misrepresented in global models. Research will deliver new understanding of the mechanisms that drive the uncertainty in projections. HyCRISTAL will use this information to understand trends, when climate-change signals will emerge and provide a process-based expert judgement on projections. Working with policy makers, inter-disciplinary research (hydrology, economics, engineering, social science, ecology and decision-making) will quantify risks for rural & urban livelihoods, quantify climate impacts and provide the necessary tools to use climate information for decision making. HyCRISTAL will work with partners to co-produce research for decision-making on a 5-40 year timescale, demonstrated in 2 main pilots for urban water and policies to enable adaptive climate-smart rural livelihoods. These cover two of three areas of need from the African Ministerial Council on Environments Comprehensive Framework of African Climate Change Programmes. HyCRISTAL has already engaged 12 partners from across EA. HyCRISTALs Advisory Board will provide a mechanism for further growing stakeholder engagement. HyCRISTAL will work with the FCFA global & regional projects and CCKE, sharing methods, tools, user needs, expertise & communication. Uniquely, HyCRISTAL will capitalise on the new LVB-HyNEWS, an African-led consortium, governed by the East African Community, the Lake Victoria Basin Commission and National Meteorological and Hydrological agencies, with the African Ministerial Conference on Meteorology as an observer. HyCRISTAL will build EA capacity directly via collaboration (11 of 25 HyCRISTAL Co-Is are African, with 9 full-time in Africa), including data collection and via targeted workshops and teaching. HyCRISTAL will deliver evidence of impact, with new and deep climate science insights that will far outlast its duration. It will support decisions for climate-resilient infrastructure and livelihoods through application of new understanding in its pilots, with common methodological and infrastructure lessons to promote policy and enable transformational change for impact-at-scale. Using a combination of user-led and science-based management tools, HyCRISTAL will ensure the latest physical science, engineering and social-science yield maximum impacts. HyCRISTAL will deliver outstanding outputs across FCFAs aims; synergies with LVB-HyNEWS will add to these and ensure longevity beyond HyCRISTAL.


O'Brien K.,University of Oslo | Reams J.,Norwegian University of Science and Technology | Caspari A.,Mindshift Integral | Dugmore A.,University of Edinburgh | And 11 more authors.
Environmental Science and Policy | Year: 2013

This paper considers the changes in education and capacity building that are needed in response to environmental and social challenges of the 21st Century. We argue that such changes will require more than adjustments in current educational systems, research funding strategies, and interdisciplinary collaborations. Instead, it calls for a deeper questioning of the assumptions and beliefs that frame both problems and solutions. We first discuss the challenges of transforming education and capacity building within five key arenas: interdisciplinary research; university education systems; primary and secondary education systems; researchers from the developing world; and the public at large and politicians. Our starting point is that any type of revolution that is proposed in response to global change is likely to reflect the educational perspectives and paradigms of those calling for the revolution. We differentiate between a circular revolution (as in the " plan-do-check-act cycle" often used in change management) versus an axial revolution (moving to a different way of thinking about the issues), arguing that the latter is a more appropriate response to the complex transdisciplinary challenges posed by global environmental change. We present some potential tools to promote an axial revolution, and consider the limits to this approach. We conclude that rather than promoting one large and ideologically homogenous revolution in education and capacity building, there is a need for a revolution in the way that leaders working with education and capacity building look at systems and processes of change. From this perspective, transformative learning may not only be desirable, but critical in responding to the challenges posed by global environmental change. © 2012 Elsevier Ltd. Source


Davis S.K.,Colorado State University | Thompson J.L.,Colorado State University | Schweizer S.E.,International START Secretariat
Human Dimensions of Wildlife | Year: 2012

Rapid advances in tablet technology and the increasing availability of electronic survey applications provide opportunities to streamline on-site human dimensions data collection. This article compares response rates and cost efficiencies of an iPad interface used for on-site survey administration to other types of human dimensions of wildlife survey administration response rates and expenses. Results also illustrate respondents' interface preference from a recent survey administered at National Wildlife Refuges and National Parks across the United States. Refuge and Park visitors enjoyed taking on-site surveys on iPads more than traditional paper surveys, and indicated a preference for taking future surveys on iPads instead of paper (t = 21.64, p <.001, η =.39); iPad survey administration was more cost efficient for large (over 1,350) survey samples, and garnered a higher than average response rate than online and mail surveys, but similar to average response rates for on-site intercept survey administration. © 2012 Copyright Taylor and Francis Group, LLC. Source


Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 256.40K | Year: 2015

The problem: Building climate change resilience necessarily means building urban resilience. Africas future is dominated by a rapidly increasing urban population with complicated demographic, economic, political, spatial and infrastructural transitions. This creates complex climate vulnerabilities of critical consequence in the co-dependent city-regions. Climate change substantially complicates the trajectories of African development, exacerbated by climate information that is poorly attuned to the needs of African decision makers. Critical gaps are how climate processes interact at the temporal and spatial scales that matter for decision making, limited institutional capacity to develop and then act on climate information, and inadequate means, methods, and structures to bridge the divides. Current modalities in climate services are largely supply driven and rarely begin with the multiplicity of climate sensitive development challenges. There is a dominant need to address this disconnect at the urban scale, yet climate research in Africa is poorly configured to respond, and the spatial scale and thematic foci are not well attuned to urban problems. Most climate-related policies and development strategies focus at the national scale and are sectorally based, resulting in a poor fit to the vital urban environments with their tightly interlocking place-based systems. Response: FRACTALs aim is to advance scientific knowledge about regional climate responses to anthropogenic forcings, enhance the integration of this knowledge into decision making at the co-dependent city-region scale, and thus enable responsible development pathways. We focus on city-region scales of climate information and decision making. Informed by the literature, guided by co-exploration with decision makers, we concentrate on two key cross-cutting issues: Water and Energy, and secondarily their influence on food security. We work within and across disciplinary boundaries (transdisciplinarity) and develop all aspects of the research process in collaboration with user groups (co-exploration).The project functions through three interconnected work packages focused on three Tier 1 cities (Windhoek, Maputo and Lusaka), a secondary focus on three Tier 2 cities (Blantyre, Gaborone and Harare), and two self-funded partner cities (Cape Town and eThekwini). Work Package 1 (WP1) is an ongoing and sustained activity operating as a learning laboratory for pilot studies to link research from WP2 and 3 to a real world iterative dialogue and decision process. WP1 frames, informs, and steers the research questions of WP2 and 3, and so centres all research on needs for responsible development pathways of city-region systems. WP2 addresses the decision making space in cities; the political, economic, technical and social determinants of decision making, and seeks to understand the opportunities for better incorporation of climate information into local decision making contexts. WP3, the majority effort, focuses on advancing understanding of the physical climate processes that govern the regional system, both as observed and simulated. This knowledge grounds the development of robust and scale relevant climate information, and the related analysis and communication. This is steered explicitly by WP1s perspective of urban climate change risk, resilience, impacts, and decisions for adaptation and development. The project will frame a new paradigm for user-informed, knowledge-based decisions to develop pathways to resilience for the majority population. It will provide a step change in understanding the cross-scale climate processes that drive change and so enable enhanced uptake of climate information in near to medium-term decision making. The project legacy will include improved scientific capacity and collaboration, provide transferable knowledge to enhance decision making on the African continent, and in this make significant contribution to academic disciplines.


Habtezion S.,International START Secretariat | Habtezion S.,University of Nairobi | Adelekan I.,University of Ibadan | Adelekan I.,University of Nairobi | And 30 more authors.
Current Opinion in Environmental Sustainability | Year: 2015

Traditional approaches for understanding environmental governance. -. such as environmental policy analysis or natural resources management. -. do not adequately address the gamut of human-natural system interactions within the context of the complex biogeophysical cycles and processes of the planet. This is perhaps more so in the African regional context where the complex relationships between modern and traditional governance systems and global change dynamics are arguably more pronounced.The Earth System Governance (ESG) Analytical Framework encompasses diverse systems and actors involved in the regulation of societal activities and behaviors vis-à-vis earth system dynamics. The concept encompasses a myriad of public and private actors and actor networks at all levels of policy and decision-making. The existence of, and interaction among, these diverse actors and systems, however, is under-researched in the African context. Various research approaches taken to address crucial global environmental change (GEC) challenges in Africa have proven to be inadequate because they tend to overlook the complex interactions among the various local actors, players, and indigenous conditions and practices vis-à-vis GEC system drivers and teleconnections. Similarly, the regional peculiarities in terms of governance typologies and socio-cultural diversity highlight the need for nuanced understanding of the complex interactions and nexuses among multiple actors and interests and Earth system processes. However, this diversity and complexity has often been lost in generalized enquiries. We argue that examination of the governance-GEC nexus through the aid of the ESG Framework would provide a much broader and more helpful insight. © 2015 Elsevier B.V. Source

Discover hidden collaborations