International Max Planck Research School Molecular Biology

Göttingen, Germany

International Max Planck Research School Molecular Biology

Göttingen, Germany
Time filter
Source Type

Denker A.,European Neuroscience Institute | Denker A.,International Max Planck Research School Molecular Biology | Bethani I.,European Neuroscience Institute | Bethani I.,Goethe University Frankfurt | And 10 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2011

Chemical synapses contain substantial numbers of neurotransmitter- filled synaptic vesicles, ranging from approximately 100 to many thousands. The vesicles fuse with the plasma membrane to release neurotransmitter and are subsequently reformed and recycled. Stimulation of synapses in vitro generally causes the majority of the synaptic vesicles to release neurotransmitter, leading to the assumption that synapses contain numerous vesicles to sustain transmission during high activity. We tested this assumption by an approach we termed cellular ethology, monitoring vesicle function in behaving animals (10 animal models, nematodes to mammals). Using FM dye photooxidation, pHluorin imaging, and HRP uptake we found that only approximately 1-5% of the vesicles recycled over several hours, in both CNS synapses and neuromuscular junctions. These vesicles recycle repeatedly, intermixing slowly (over hours) with the reserve vesicles. The latter can eventually release when recycling is inhibited in vivo but do not seem to participate under normal activity. Vesicle recycling increased only to ≈5% in animals subjected to an extreme stress situation (frog predation on locusts). Synapsin, a molecule binding both vesicles and the cytoskeleton, may be a marker for the reserve vesicles: the proportion of vesicles recycling in vivo increased to30%in synapsin-null Drosophila. We conclude that synapses do not require numerous reserve vesicles to sustain neurotransmitter release and thus may use them for other purposes, examined in the accompanying paper.

Sasidharan N.,European Neuroscience Institute | Sasidharan N.,University of Gottingen | Sasidharan N.,International Max Planck Research School Neurosciences | Sumakovic M.,European Neuroscience Institute | And 16 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2012

Neurons secrete neuropeptides from dense core vesicles (DCVs) to modulate neuronal activity. Little is known about how neurons manage to differentially regulate the release of synaptic vesicles (SVs) and DCVs. To analyze this, we screened all Caenorhabditis elegans Rab GTPases and Tre2/Bub2/Cdc16 (TBC) domain containing GTPase-activating proteins (GAPs) for defects in DCV release from C. elegans motoneurons. rab-5 and rab-10 mutants show severe defects in DCV secretion, whereas SV exocytosis is unaffected. We identified TBC-2 and TBC-4 as putative GAPs for RAB-5 and RAB-10, respectively. Multiple Rabs and RabGAPs are typically organized in cascades that confer directionality to membrane-trafficking processes. We show here that the formation of release-competent DCVs requires a reciprocal exclusion cascade coupling RAB-5 and RAB-10, in which each of the two Rabs recruits the other's GAP molecule. This contributes to a separation of RAB-5 and RAB-10 domains at the Golgi-endosomal interface, which is lost when either of the two GAPs is inactivated. Taken together, our data suggest that RAB-5 and RAB-10 cooperate to locally exclude each other at an essential stage during DCV sorting.

Gazit N.,Tel Aviv University | Vertkin I.,Tel Aviv University | Shapira I.,Tel Aviv University | Helm M.,University of Gottingen | And 6 more authors.
Neuron | Year: 2016

The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer's disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer's disease. © 2016 The Authors.

Ailion M.,Howard Hughes Medical Institute | Ailion M.,University of Washington | Hannemann M.,European Neuroscience Institute | Hannemann M.,International Max Planck Research School Molecular Biology | And 16 more authors.
Neuron | Year: 2014

Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. © 2014 Elsevier Inc.

Hannemann M.,European Neuroscience Institute ENI | Hannemann M.,International Max Planck Research School Molecular Biology | Sasidharan N.,European Neuroscience Institute ENI | Sasidharan N.,International Max Planck Research School Neuroscience | And 10 more authors.
PLoS Genetics | Year: 2012

Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation. © 2012 Hannemann et al.

Kabatas S.,University of Gottingen | Vreja I.C.,University of Gottingen | Vreja I.C.,International Max Planck Research School Molecular Biology | Saka S.K.,University of Gottingen | And 7 more authors.
Chemical Communications | Year: 2015

Imaging techniques should differentiate between specific signals, from the biomolecules of interest, and non-specific signals, from the background. We present a probe containing 15N and 14N isotopes in approximately equal proportion, for secondary ion mass spectrometry imaging. This probe designed for a precise biomolecule analysis is insensitive to background signals. © 2015 The Royal Society of Chemistry.

Denker A.,European Neuroscience Institute | Denker A.,International Max Planck Research School Molecular Biology | Rizzoli S.O.,European Neuroscience Institute
Frontiers in Synaptic Neuroscience | Year: 2010

During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or "pools". We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are "fixed". Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. © 2010 Denker and Rizzoli.

Vreja I.C.,University of Gottingen | Vreja I.C.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain | Vreja I.C.,International Max Planck Research School Molecular Biology | Kabatas S.,University of Gottingen | And 12 more authors.
Angewandte Chemie - International Edition | Year: 2015

Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added 19F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The 19F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms. SPILLing the beans: a method of labeling specific proteins for secondary-ion mass spectrometry (SIMS), termed SPILL (specific protein isotopic and fluorescence labeling) is developed which involves unnatural amino acid incorporation and click reaction with a fluorescent probe enriched in 19F (see scheme). The applicability of this method extends from cell culture systems to invertebrate model organisms. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Saka S.,European Neuroscience Institute | Saka S.,International Max Planck Research School Molecular Biology | Rizzoli S.O.,European Neuroscience Institute
BioEssays | Year: 2012

The use of super-resolution imaging techniques in cell biology has yielded a wealth of information regarding cellular elements and processes that were invisible to conventional imaging. Focusing on images obtained by stimulated emission depletion (STED) microscopy, we discuss how the new high-resolution data influence the ways in which we use and interpret images in cell biology. Super-resolution images have lent support to some of our current hypotheses. But, more significantly, they have revealed unexpectedly complex processes that cannot be accounted for by the simpler models based on diffraction-limited imaging. The super-resolution imaging data challenge cell biologists to change their theoretical framework, by including, for instance, interpretations that describe multiple functions, functional errors or lack of function for cellular elements. In this context, we argue that descriptive research using super-resolution microscopy is now as necessary as hypothesis-driven research. © 2012 WILEY Periodicals, Inc..

Loading International Max Planck Research School Molecular Biology collaborators
Loading International Max Planck Research School Molecular Biology collaborators