Entity

Time filter

Source Type


Steepinska U.,Polish Academy of Sciences | Kuwana T.,International Institute of Avian Conservation Science | Olszanska B.,Polish Academy of Sciences
Zygote | Year: 2013

Summary The expression of nine serotonin (5-HT) receptor transcripts was studied using reverse transcription polymerase chain reaction (RT-PCR) in germ cells, cleavage and gastrulation stages of Japanese quail, and qPCR for 5-HT3 and 5-HT4 receptors in oocytes and embryos. We show the presence/absence of nine serotonin transcripts known in birds for receptors 5-HT1A, 5-HT1F, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6 and 5-HT7A in avian germ cells and early embryos. The absence of 5-HT3 and 5-HT5A in primordial germ cells and of 5-HT3 and 5-HT7A in sperm is characteristic. All transcripts appeared in oocytes at all stages (except for 5-HT3 and 5-HT5A transcripts) and all were present in cleaving embryos and at gastrulation, except for 5-HT3, which was permanently observed as late as in stage 4. Interestingly, 5-HT3 and 5-HT5A receptors accumulated in 3-mm and F1 oocytes but were degraded at ovulation and started to be re-transcribed in cleavage stage II embryos and beyond. The selective appearance of 5-HT receptors in germ cells and early embryos supports the hypothesis that serotonin may act as a signalling molecule at early stages of germ line and embryo differentiation via individual receptors present during different stages, when specialized communication systems are not yet developed. © Cambridge University Press 2014. Source


Srihawong T.,Kasetsart University | Kuwana T.,International Institute of Avian Conservation Science | Siripattarapravat K.,Kasetsart University | Tirawattanawanich C.,Kasetsart University
International Journal of Developmental Biology | Year: 2015

Avian primordial germ cells (PGCs) are destined to migrate a long distance from their extra embryonic region via the vascular system to the gonadal ridges where they form the germ cells. Although PGC migration is crucial for a genetic continuation to the next generation, the factors and mechanisms that control their migration remain largely unknown. In the present study the chemotactic effect of stem cell factor (SCF) was examined on chicken blood circulating PGCs (cPGC), employing 3D chemotaxis slides and time-lapsed imaging analyses as an in vitro study model. Upon in vitro exposure to an SCF gradient, 77.1% (54 out of 70) of cPGCs showed a clear response, of which 48.1% (26 out of 54) polarized with the consecutive formation of a persistent membrane protrusion and significant directional migration towards the gradient and the others showed transient membrane protrusions. In contrast, the controls and apparently SCF unresponsive cPGCs and c-kit-negative red blood cells (RBCs) showed only cytoplasmic cycling with random formations of membrane blebbing and no directional migration. Significant (p< 0.05) differences between the SCF-treated and control cPGCs and RBCs were found in the migration parameters of eccentricity, accumulated and Euclidean distances, and migration velocity. The SCF-treated PGCs also revealed a chemotactic response, as judged by their significant displacement of center of mass and Rayleigh test. Complete inhibition of all the SCF-induced responses in PGCs was found following pretreatment of the cPGCs with 10 mM of the c-kit inhibitor, STI57l, prior to SCF exposure. In addition, cPGCs were found to be positive for c-kit expression using a polyclonal goat anti-mouse c-kit primary antibody, suggesting that the cPGCs were capable of SCF sensing and the potential involvement of SCF/c-kit in the chemotactic migration. Therefore, SCF is suggested to function as a chemoattractant in the migration of chicken cPGC. © 2015 UBC Press. Source


Naito M.,Japan National Institute of Agrobiological Science | Harumi T.,Japan National Institute of Agrobiological Science | Kuwana T.,International Institute of Avian Conservation Science
Animal Reproduction Science | Year: 2015

Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer. © 2014 Elsevier B.V. Source


Naito M.,Japan National Institute of Agrobiological Science | Harumi T.,Japan National Institute of Agrobiological Science | Kuwana T.,International Institute of Avian Conservation Science
Journal of Poultry Science | Year: 2015

In the present study, chicken primordial germ cells (PGCs) were transfected with GFP gene in vitro or in vivo using the piggyBac transposon vector system. PGCs cultured for 465 days were transfected in vitro, and GFP gene expression was observed in 25% of the treated PGCs after culturing for further 42 days. The cultured PGCs expressing GFP gene were transferred to recipient embryos and strong GFP gene expression was observed in the recipient gonads at day 18.5 of incubation. Circulating PGCs were transfected in vivo, and intense GFP gene expression was observed in the gonads of recipient embryos at day 18.5 of incubation. The procedure employed in the present study will contribute to successful gene transfer into chickens. © 2015, Japan Poultry Science Association. Source


Steepinska U.,Polish Academy of Sciences | Steepinska U.,International Institute of Avian Conservation Science | Kuwana T.,Polish Academy of Sciences | Kuwana T.,International Institute of Avian Conservation Science | And 2 more authors.
Zygote | Year: 2014

The expression of nine serotonin (5-HT) receptor transcripts was studied using reverse transcription polymerase chain reaction (RT-PCR) in germ cells, cleavage and gastrulation stages of Japanese quail, and qPCR for 5-HT3 and 5-HT4 receptors in oocytes and embryos. We show the presence/absence of nine serotonin transcripts known in birds for receptors 5-HT1A, 5-HT1F, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6 and 5-HT7A in avian germ cells and early embryos. The absence of 5-HT3 and 5-HT5A in primordial germ cells and of 5-HT3 and 5-HT7A in sperm is characteristic. All transcripts appeared in oocytes at all stages (except for 5-HT3 and 5-HT5A transcripts) and all were present in cleaving embryos and at gastrulation, except for 5-HT3, which was permanently observed as late as in stage 4. Interestingly, 5-HT3 and 5-HT5A receptors accumulated in 3-mm and F1 oocytes but were degraded at ovulation and started to be re-transcribed in cleavage stage II embryos and beyond. The selective appearance of 5-HT receptors in germ cells and early embryos supports the hypothesis that serotonin may act as a signalling molecule at early stages of germ line and embryo differentiation via individual receptors present during different stages, when specialized communication systems are not yet developed. © 2014 Cambridge University Press. Source

Discover hidden collaborations