Phoenix, AZ, United States
Phoenix, AZ, United States

Time filter

Source Type

CHANDLER, Ariz.--(BUSINESS WIRE)--On May 12, 2017, Governor Doug Ducey signed Arizona’s $9.8 billion 2018-2019 Budget which provides bonding authority for $1 billion for investments in University Research Infrastructure. This investment continues a collaboration between the State of Arizona, Industry Leaders, Philanthropists, and Arizona’s Universities that is driving Arizona towards its goal of becoming a top-tier bioscience state. The Biotechnology Innovation Organization in partnership with TEConomy Partners publishes the biennial report on the economic impact of the bioscience industry that provides a national overview and ranks the 50 states and Puerto Rico across five quintiles or tiers. The 2016 Report, The Value of Bioscience Innovation in Growing Jobs and Improving Quality of Life 2016, was released in June of 2016 at the BIO International Convention in San Francisco. The report includes a wide range of metrics and economic indicators on a national and state basis. As reported in 2016, the top 10 states based on the number of bioscience firms (Tier I) were California, Florida, Illinois, Massachusetts, New Jersey, New York, North Carolina, Pennsylvania, Ohio, and Texas. Could Arizona achieve the growth necessary to reach the top-tiers? Arizona’s leaders began the journey to achieve this goal twenty years ago. In 1997, the Arizona Bioindustry Cluster was founded by Bob Case and Michael E. Berens, Ph.D. laying the foundation for what would become the Arizona Bioindustry Association or AZBio in 2003. Work by the Arizona Legislature and a coalition of community leaders supported voter passage of Proposition 301 in the year 2000. Prop. 301 established a six-tenths of one cent sales tax to support education that included funding for an estimated $1 billion (generated and disbursed over 20 years) for research at Arizona universities. The resulting Technology Research Initiative Fund (TRIF) is administered by the Arizona Board of Regents and has distributed $892 million for the period spanning from 2001-2016 and is well on its way to reach the billion dollar goal by June 30, 2021. The following year, the Flinn Foundation committed to 10 years of major funding for Arizona biosciences and brought together over 100 leaders to begin to craft what would become the Arizona Bioscience Roadmap. Under the stewardship of the Flinn Foundation, the strategic plan for the biosciences in Arizona would include key initiatives along with a commitment to measurement and reporting of the results. The first decade of the new century marked the completion of The Human Genome Project and a new era for life science research and development globally. From 2000 to 2010, Arizona’s Bioscience community activity included the International Genomics Consortium establishing its home in Phoenix and the subsequent creation of the Translational Genomics Research Institute (TGen) which was funded by a $90 million fundraising effort and spun out of IGC. In addition to the funding from Prop. 301, the Arizona legislature approved $440 million for construction of new university research facilities supporting the growth of the Biodesign Institute at Arizona State University, the BIO5 Institute at the University of Arizona, new research facilities at Northern Arizona University and more. An additional $100 million was approved by the voters for bioscience and health care training and facilities at Maricopa Community Colleges. The Virginia G. Piper Charitable Trust committed $50 million to personalized medicine in Arizona and local philanthropists have supported the community with additional resources for research and patient care across the state. Over the last two decades, Arizona’s bioscience industry has focused and grown. Arizona has risen in the rankings to take its place in the second tier of the Bioscience rankings based on number of firms. The Biodesign Institute at Arizona State University has grown from one building to two with a third building under construction. Arizona is now home to the Critical Path Institute, the National Biomarker Development Alliance, the Arizona Alzheimer’s Alliance, the Banner Alzheimer’s Institute, Cancer Treatment Centers of America, and Banner MD Anderson. Barrow Neurological Institute, founded in 1962 as a regional specialty center, has grown into one of the premiere destinations in the world for neurology and neurosurgery. Phoenix Children’s Hospital is now one of the largest children’s hospitals in the country and is ranked in 10 out of 10 specialties. Mayo Clinic has expanded its research and patient care capacity, added proton beam capabilities and will welcome the first class to its Arizona-based Mayo Medical School in 2017. The University of Arizona extended its reach from Tucson to Phoenix which now includes the The University of Arizona College of Medicine-Phoenix and the The University of Arizona Cancer Center at Dignity Health St. Joseph's Hospital and Medical Center on the Phoenix Biomedical Campus. The number of life science companies in Arizona is now over 1,400 and multi-billion dollar exits include the sale of Ventana Medical Systems, Inc. to Roche for $3.4 Billion and Abraxis Biosciences for $2.9 billion to Celgene. Today, companies that were born in Arizona are now publicly traded including Insys, HTG Molecular, and SensTech while others have been acquired by AMAG Pharmaceuticals, Caris Diagnostics, Thermo Fischer, IMS Health, Merz, Stryker and more. These companies have continued to grow in Arizona joining global leaders including BARD, Medtronic, and W.L. Gore. The combined benefits of Arizona’s world-class healthcare institutions and diverse population demographics are driving the number of active clinical trials in the state which have more than doubled over the period from 2012 – 2017 based on data at ClinicalTrials.gov. Long-time residents and new industry partners are benefiting from Arizona’s business-friendly public policy and regulatory environment, affordable operating cost structures, stable and reliable energy suppliers, well-managed water resources, talent, and an affordable cost of living in communities that provide their employees the opportunity for an excellent quality of life. Free from the business disruptions that can be caused by earthquakes, hurricanes, tornadoes, and floods, Arizona has become a go-to site for both high-tech manufacturing and corporate data centers. The Arizona Innovation Challenge, which made its first awards in 2011 and is powered by the Arizona Commerce Authority, awards the most money in the country for a technology commercialization challenge – $3 million ($1.5 million twice yearly) to the world’s most promising technology ventures. Awards range from $100,000 to $250,000 per company. Over this 20-year span, Arizona has gained a reputation as the state with the “collaborative gene” and attracts thought leaders looking to discover, develop, and deliver life-changing and life-saving innovations to patients. Globally recognized thought leaders have left the hallowed halls of Harvard, the National Institutes of Health and other world-class institutions to innovate and collaborate in Arizona. One real-world example of this collaboration is Arizona State University’s International School of Biomedical Diagnostics. A global center for research, teaching and service in the emerging field of biomedical diagnostics, the school pulls expertise from faculty across ASU, in collaboration with Dublin City University (DCU), Ventana Medical Systems, and other industry partners. ASU faculty come from: the Biodesign Institute, College of Health Solutions, Ira A. Fulton Schools of Engineering, School of Life Sciences in the College of Liberal Arts and Sciences, the W. P. Carey School of Business, and the Consortium for Science, Policy & Outcomes. The initiative also leverages the expertise of the National Biomarker Development Alliance that is led by ASU. Under the leadership of President Michael Crow, Arizona State University has been named the Most Innovative University in the United states for two years running and out-ranking Stanford and MIT. Throughout the Arizona Bioscience Roadmap’s first decade, Battelle tracked performance data that was released annually by the Flinn Foundation. The performance metrics released in 2014 serve as the benchmark for the second decade of the Roadmap, with new data reported on a biennial basis. The most current data is available in “2015 Progress of the Biosciences in Arizona,” a report produced by TEConomy Partners (a spinoff of Battelle) that was released in March 2016. The Flinn Foundation will continue to track the progress of the bioscience sector each year by highlighting the state’s major developments. In April of 2017, the Flinn Foundation released its most recent update, the 2016 Progress of the Biosciences in Arizona. Could Arizona achieve the growth necessary to reach the top-tiers? Absolutely. Now, twenty years into the process, Arizona’s Bioindustry has a new funding catalyst. With the Governor’s vision and the Legislature’s support, an additional $1 billion dollars will be invested in university research infrastructure beginning in July of 2018. Arizona’s leaders are already discussing what the next iteration of Prop. 301 will look like as it approaches its renewal on or before 2020. The Arizona Legislature has passed HB2191 which authorizes an additional $10 million in Angel Investor Tax Credits spread over the next four years and SB1416 which continues Arizona’s Quality Jobs Tax Credit, Arizona's Research and Development Tax Credits and other business incentives. Both bills have been sent to the Governor for his signature. Arizona’s leaders are continuing the journey to take the state into the top tiers of the bioscience rankings. The Flinn Foundation has extended its commitment to steward the Arizona Bioscience Roadmap through the year 2025 with the support of the 100-person Arizona Bioscience Roadmap Steering Committee and the Arizona Bioindustry Association (AZBio) Board of Directors is committed to the vision of making Arizona a top-tier bioscience state and works collaboratively to make that vision a reality. A key component in Arizona’s life science ecosystem, the Arizona Bioindustry Association (AZBio) is the only statewide organization exclusively focused on Arizona’s bioscience industry. AZBio membership includes patient advocacy organizations, life science innovators, educators, healthcare partners, municipalities and leading business organizations. AZBio is the statewide affiliate of the Biotechnology Innovation Organization (BIO) and works in partnership with AdvaMed, MDMA, and PhRMA to advance innovation and to ensure that the value delivered from life-changing and life-saving innovation benefits people in Arizona and around the world. For more information visit www.AZBio.org and www.AZBio.TV To learn more about Arizona’s Bioindustry:


Matteson S.,Quintiles | Paulauskis J.,International Genomics Consortium | Foisy S.,GenoLogics | Hall S.,Pfizer | Duval M.,Pfizer
Pharmacogenomics | Year: 2010

The use of human genetic polymorphism data in drug development is not a recent event. Typically, the detection of patients fgenetic variations in drug-metabolizing enzymes has become common practice in clinical laboratories. What is new is the scale and diversity of genomics data that has entered into the drug research and development decision-making process. At least three concurrent events contribute to this paradigm shift: first the growing body of evidence that establishes that interindividual variation in both therapeutic response and adverse events are attributable to a genetic component; second the technological progress that enables the consistent and reproducible detection of human genomic quantities; third the expectation that the productivity of new drug development will be increased by identifying which patients would benefit from candidate therapies early in the clinical process. This influx of human genomics data into clinical laboratories requires some logistical adjustment in terms of data management. The major specifications of an information solution system intended for a clinical genomic laboratory are its compliance with regulatory procedures, regarding the handling of human genetic data and its subsequent integration into an existing clinical data management system from the hosting institution. The purpose of this article is to inform the community of the challenges in setting up a center for genomics data that ensures accurate, traceable and integrated data for laboratory management. This is by no means the only way to accomplish the same goal, and is simply presented as one way that Pfizer chose to solve these issues. © 2010 Future Medicine Ltd.


Morris S.,International Genomics Consortium | Morris S.,Arizona State University | Gel E.S.,Arizona State University | Smith J.V.,International Genomics Consortium | And 4 more authors.
Pharmacogenomics | Year: 2013

Aims: Biobanks are frequently required to verify specimen relationships. We present two algorithms to compare SNP genotype patterns that provide an objective, high-throughput tool for verification. Methods: The first algorithm allows for comparison of all holdings within a biobank, and is well suited to construct sample relationships de novo for comparison with assumed relationships. The second algorithm is tailored to oncology, and allows one to confirm that paired DNAs from malignant and normal tissues are from the same individual in the presence of copy number variations. To evaluate both algorithms, we used an internal training data set (n = 1504) and an external validation data set (n = 1457). Results: In comparison with the results from manual review and a priori knowledge of patient relationships, we identified no errors in interpreting sample relationships within our validation data set. Conclusion: We provide an efficient and objective method of automated data analysis that is currently lacking for establishing and verifying specimen relationships in biobanks. Original submitted 11 October 2012; Revision submitted 25 January 201. © 2013 Future Medicine Ltd.


Patent
International Genomics Consortium | Date: 2014-05-30

Systems, devices, and methods for removing areas of tissue are described. A programmable laser may remove precise areas of tissue while the tissue remains substantially frozen. The laser is programmed in part by analyzing a reference image of a representative tissue section. A software program may receive digital images of test slices. Areas of interest in the image may be selected by a user. The software program can then create and send cut instructions to the programmable laser. The laser may be configured to make perforated cuts to remove the area of interest without melting the removed section.


Patent
International Genomics Consortium | Date: 2011-02-08

Systems, devices, and methods for removing areas of tissue are described. A programmable laser may remove precise areas of tissue while the tissue remains substantially frozen. The laser is programmed in part by analyzing a reference image of a representative tissue section. A software program may receive digital images of test slices. Areas of interest in the image may be selected by a user. The software program can then create and send cut instructions to the programmable laser. The laser may be configured to make perforated cuts to remove the area of interest without melting the removed section.


Patent
International Genomics Consortium | Date: 2012-09-24

The present disclosure describes a method to estimate a geometric parameter to describe the degradation pattern (i.e. the proportion of bases that are damaged) in a sample. Using the values provided by the described systems and methods, researchers can estimate the proportion of undamaged fragments that are a certain base pairs in length or can estimate the number of errors within a fragment of certain base pairs in length.


PubMed | International Genomics Consortium
Type: Journal Article | Journal: Pharmacogenomics | Year: 2013

Biobanks are frequently required to verify specimen relationships. We present two algorithms to compare SNP genotype patterns that provide an objective, high-throughput tool for verification.The first algorithm allows for comparison of all holdings within a biobank, and is well suited to construct sample relationships de novo for comparison with assumed relationships. The second algorithm is tailored to oncology, and allows one to confirm that paired DNAs from malignant and normal tissues are from the same individual in the presence of copy number variations. To evaluate both algorithms, we used an internal training data set (n = 1504) and an external validation data set (n = 1457).In comparison with the results from manual review and a priori knowledge of patient relationships, we identified no errors in interpreting sample relationships within our validation data set.We provide an efficient and objective method of automated data analysis that is currently lacking for establishing and verifying specimen relationships in biobanks.

Loading International Genomics Consortium collaborators
Loading International Genomics Consortium collaborators