Time filter

Source Type

Vagen T.-G.,International Center for Research in Agroforestry | Winowiecki L.A.,International Center for Tropical Agriculture
Environmental Research Letters | Year: 2013

Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0-30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m-2. The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time. © 2013 IOP Publishing Ltd. Source

Luedeling E.,International Center for Research in Agroforestry
Scientia Horticulturae | Year: 2012

Temperate fruit and nut species require exposure to chilling conditions in winter to break dormancy and produce high yields. Adequate winter chill is an important site characteristic for commercial orchard operations, and quantifying chill is crucial for orchard management. Climate change may impact winter chill. With a view to adapting orchards to climate change, this review assesses the state of knowledge in modelling winter chill and the performance of various modelling approaches. It then goes on to present assessments of past and projected future changes in winter chill for fruit growing regions and discusses potential adaptation strategies. Some of the most common approaches to modelling chill, in particular the Chilling Hours approach, are very sensitive to temperature increases, and have also been found to perform poorly, especially in warm growing regions. The Dynamic Model offers a more complex but also more accurate alternative, and use of this model is recommended. Chill changes projected with the Dynamic Model are typically much less severe than those estimated with other models. Nevertheless, projections of future chill consistently indicate substantial losses for the warmest growing regions, while temperate regions will experience relatively little change, and cold regions may even see chill increases. Growers can adapt to lower chill by introducing low-chill cultivars, by influencing orchard microclimates and by applying rest-breaking chemicals. Given substantial knowledge gaps in tree dormancy, accurate models are still a long way off. Since timely adaptation is essential for growers of long-lived high-value perennials, alternative ways of adaptation planning are needed. Climate analogues, which are present-day manifestations of future projected climates, can be used for identifying and testing future-adapted species and cultivars. Horticultural researchers and practitioners should work towards the development and widespread adoption of better chill accumulation and dormancy models, for facilitating quantitatively appropriate adaptation planning. © 2012 Elsevier B.V. Source

Pagella T.F.,Bangor University | Sinclair F.L.,Bangor University | Sinclair F.L.,International Center for Research in Agroforestry
Landscape Ecology | Year: 2014

The importance of land use in affecting a range of ecosystem services (ES) provided from rural landscapes is increasingly recognised, creating an imperative for tools to assist in managing impacts of land use on ES provision. Many stakeholders, at a range of scales, are involved, including policy makers and implementers, land users and people receiving the services. Here, we develop a new and comprehensive typology of ES maps by expanding the basic stock-flow-receptor concept to create a set of map categories that embraces requirements for management of ES provision. We then use this typology as a framework for assessment of approaches to mapping ES. Most approaches have considered natural capital stocks of few services, at large scales (>1,000 km2) and coarse resolution (>100 m2). Emphasis has been on areas of ES generation, with little attention to flows, limiting the extent to which reception of services, interactions amongst services, and impacts on different stakeholders are considered. Most approaches focused on a bounded watershed or administrative unit, with little attention to landscape evolution, or to the definition of system boundaries that encompass flows from source to reception for different services. Although uncertainty is inherent in both input data and the services that are mapped, this is rarely acknowledged, quantified or presented. These features of current mapping approaches constrain their usefulness for informing the management of ES provision from rural landscapes. Key areas for future development are (1) maps at scales and resolutions that connect field scale management options to local landscape impacts; (2) mapping flows, and defining landscape boundaries, that include complete pathways, from source to reception; (3) calculating and presenting information on synergies and trade-offs amongst services; and (4) incorporating stakeholder knowledge and perspectives in the generation and interpretation of maps to bound and communicate uncertainty and improve their legitimacy. © 2014 The Author(s). Source

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: KBBE.2013.1.2-01 | Award Amount: 8.01M | Year: 2014

Agroforestry is the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions. AGFORWARD (AGroFORestry that Will Advance Rural Development) is a four-year project, developed by 23 organisations at the forefront of agroforestry research, practice and promotion in Europe, with the goal of promoting appropriate agroforestry practices that advance sustainable rural development. The project will i) increase our understanding of existing, and new extensive and intensive agroforestry systems in Europe; ii) identify, develop and demonstrate innovations to improve the ecosystem service benefits and viability of agroforestry systems in Europe using participatory research, iii) develop better adapted designs and practices for the different soil and climatic conditions of Europe, and iv) promote the wide adoption of sustainable agroforestry systems. Successful and sustainable agroforestry practices are best developed by farmers and land owners working in partnership with researchers, extension staff, and other rural businesses. AGFORWARD will facilitate 33 participative agroforestry research and development stakeholder groups to improve the resilience of i) existing agroforestry systems of high nature and cultural value such as the dehesa and montado; and ii) olive, traditional orchard, and other high value tree systems, and the sustainability of iii) arable and iv) livestock systems with the integration of trees. Using existing bio-economic models, AGFORWARD will evaluate and adapt the innovations to improve the delivery of positive ecosystem services and business profitability at farm- and landscape-scales across Europe. By using and developing existing European fora, such as the European Agroforestry Federation, AGFORWARD will implement an informative and effective promotion programme to benefit the European economy, environment and society.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-18-2015 | Award Amount: 4.96M | Year: 2016

SALSA will assess the role of small farms and small food businesses in delivering a sustainable and secure supply of affordable, nutritious and culturally adequate food. SALSA will identify the mechanisms which, at different scales, can strengthen the role of small farms in food systems and thereby support sustainable food and nutrition security (FNS). By considering a gradient of 30 reference regions in Europe and in Africa, we will obtain a differentiated understanding of the role of small farms and small food businesses in very differently structured food systems and situations. SALSA will elaborate and implement a transdisciplinary, multi-scale approach that builds on and connects relevant theoretical and analytical frameworks within a food systems approach, and that uses qualitative, consultative and quantitative methods. We will also test a new combination of data-based methods and tools (including satellite technologies) for rigorously assessing in quantitative terms the interrelationships between small farms, other small food businesses and FNS, paying particular attention to limiting and enabling factors. SALSA will use participatory methods, at regional level, and establish a more global Community of Practice and multi-stakeholder learning platform, based on FAOs TECA online communication and learning platform. The SALSA consortium, and the joint learning and close cooperation, have both been designed with the EU - Africa dialogue in mind. Responding to the call we will unravel the complex interrelationships between small farms, small food businesses and FNS, and unfold the role played by small farms in (a) the balance between the different dimensions of sustainability, (b) maintaining more diverse production systems, (c) supporting the urban/rural balance in terms of labour and (d) in facilitating territorial development in countries facing a strong rural population growth.

Discover hidden collaborations