Long Beach, CA, United States
Long Beach, CA, United States

Time filter

Source Type

Patent
Intelligent Energy Ltd. | Date: 2016-10-13

A hydrogen producing reactor having a pellet core within a containment vessel. The vessel having an exit nozzle surrounding the pellet. At least one elastomeric winding surrounding the containment vessel; and, a water line to deliver fluid to the pellet. Whereby the elastomeric windings compress the containment vessel around the fuel pellet as it is used. Hydrogen and other products produced by the reactor within a cartridge is filtered with a clog-less filter and substantially pure hydrogen is output.


Patent
Intelligent Energy Ltd. | Date: 2016-09-15

A flexible fuel cell power system comprising one or more fuel cell cartridges (which contain fuel cell modules) connected to a fuel cell system is provided. The components of the flexible fuel cell power system may be placed on a shared backbone with flexible joints, and may be made of flexible materials so that the entire system can be worn by a human being.


Patent
Intelligent Energy Ltd. | Date: 2017-01-25

A flexible fuel cell power system comprising one or more fuel cell cartridges (which contain fuel cell modules) connected to a fuel cell system is provided. The components of the flexible fuel cell power system may be placed on a shared backbone with flexible joints, and may be made of flexible materials so that the entire system can be worn by a human being.


Patent
Intelligent Energy Ltd. | Date: 2017-01-25

This disclosure is drawn to systems, devices, apparatuses, and/or methods, related to fuel cell cartridges. Specifically, the disclosed systems, devices, apparatuses, and/or methods relate to compact fuel cell cartridges for producing hydrogen gas for use by fuel cells. Some example fuel cell cartridges may include a reactor module for storing a reactant, a water module for storing water, and an interface coupling the reactor module and the water module. The interface may permit the water to flow from the water module to the reactor module such that the water mixes with the reactant in the reactor module to form a gas (e.g., hydrogen gas) that may exit through a gas outlet.


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-IA | Phase: FCH-03.1-2015 | Award Amount: 106.22M | Year: 2016

Hydrogen Mobility Europe 2 (H2ME 2) brings together action in 8 European countries to address the innovations required to make the hydrogen mobility sector truly ready for market. The project will perform a large-scale market test of hydrogen refuelling infrastructure, passenger and commercial fuel cell electric vehicles operated in real-world customer applications and demonstrate the system benefits generated by using electrolytic hydrogen solutions in grid operations. H2ME 2 will increase the participation of European manufacturers into the hydrogen sector, and demonstrate new vehicles across a range of platforms, with increased choice: new cars (Honda, and Daimler), new vans (range extended vehicles from Renault/Symbio and Renault/Nissan/Intelligent Energy) and a new medium sized urban delivery truck (Renault Trucks/Symbio). H2ME 2 develops an attractive proposition around range extended vehicles and supports a major roll-out of 1,000 of these vehicles to customers in France, Germany, Scandinavia and the UK. 1,230 new hydrogen fuelled vehicles will be deployed in total, trebling the existing fuel cell fleet in Europe. H2ME 2 will establish the conditions under which electrolytic refuelling stations can play a beneficial role in the energy system, and demonstrate the acquisition of real revenues from provision of energy services for aggregated electrolyser-HRS systems at a MW scale in both the UK and France. This has the further implication of demonstrating viable opportunities for reducing the cost of hydrogen at the nozzle by providing valuable energy services without disrupting refuelling operations. H2ME 2 will test 20 new HRS rigorously at high level of utilisation using the large vehicle deployment. The loading of stations by the end of the project is expected to average 20% of their daily fuelling capacity, with some stations exceeding 50% or more. This will test the HRS to a much greater extent than has been the case in previous projects.


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-IA | Phase: FCH-01.7-2014 | Award Amount: 71.90M | Year: 2015

Hydrogen Mobility Europe (H2ME) brings together Europes 4 most ambitious national initiatives on hydrogen mobility (Germany, Scandinavia, France and the UK). The project will expand their developing networks of HRS and the fleets of fuel cell vehicles (FCEVs) operating on Europes roads, to significantly expand the activities in each country and start the creation of a pan-European hydrogen fuelling station network. In creating a project of this scale, the FCH JU will create not only a physical but also a strategic link between the regions that are leading in the deployment of hydrogen. The project will also include observer countries (Austria, Belgium and the Netherlands), who will use the learnings from this project to develop their own hydrogen mobility strategies. The project is the most ambitious coordinated hydrogen deployment project attempted in Europe. The scale of this deployment will allow the consortium to: Trial a large fleet of FCEVs in diverse applications across Europe - 200 OEM FCEVs (Daimler and Hyundai) and 125 fuel cell range-extended vans (Symbio FCell collaborating with Renault) will be deployed Deploy 29 state of the art refuelling stations, using technology from the full breadth of Europes hydrogen refuelling station providers. The scale will ensure that stations will be lower cost than in previous projects and the breadth will ensure that Europes hydrogen station developers advance together Conduct a real world test of 4 national hydrogen mobility strategies and share learnings to support other countries strategy development Analyse the customer attitude to the FCEV proposition, with a focus on attitudes to the fuelling station networks as they evolve in each country Assess the performance of the refuelling stations and vehicles in order to provide data of a sufficient resolution to allow policy-makers, early adopters and the hydrogen mobility industry to validate the readiness of the technology for full commercial roll-out.


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-RIA | Phase: FCH-01.2-2014 | Award Amount: 4.99M | Year: 2015

The principal aim of the project is to develop an EU-centric supply base for key automotive PEM fuel cell components that achieve high power density and with volume production capability along with embedded quality control as a key focus - to enable the establishment of a mature Automotive PEM fuel cell manufacturing capability in Europe. It will exploit existing EU value adding competencies and skill sets to enhance EU employment opportunities and competitiveness while supporting CO2 reduction and emissions reduction targets across the Transport sector with increased security of fuel supply (by utilising locally produced Hydrogen).


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-RIA | Phase: FCH-01-1-2016 | Award Amount: 3.49M | Year: 2017

The projects proposition and charter is to advance (MRL4 > MRL6) the critical steps of the PEM fuel cell assembly processes and associated in-line QC & end-of-line test / handover strategies and to demonstrate a route to automated volume process production capability within an automotive best practice context e.g. cycle time optimization and line-balancing, cost reduction and embedded / digitized quality control. The project will include characterization and digital codification of physical attributes of key materials (e.g. GDLs) to establish yield impacting digital cause and effects relationships within the value chain, from raw material supply / conversion / assembly through to in-service data analytics, aligning with evolving Industry 4.0 standards for data gathering / security, and line up-time, productivity monitoring. The expected outcome will be a blueprint for beyond current state automotive PEM fuel cell manufacturing capability in Europe. The project will exploit existing EU fuel cell and manufacturing competences and skill sets to enhance EU employment opportunities and competitiveness while supporting CO2 reduction and emissions reduction targets across the transport low emission vehicle sector with increased security of fuel supply (by utilizing locally produced Hydrogen).


Grant
Agency: European Commission | Branch: H2020 | Program: FCH2-CSA | Phase: FCH-04.2-2014 | Award Amount: 2.04M | Year: 2015

Despite major technological development and the start of commercial deployments of the fuel cells and hydrogen technology, the public awareness of FCH technologies has lagged behind this technical progress so far, restricting the appetite of potential customers and risking a lack of support from policymakers. To address this challenge, a consortium of leading experts has come together, combining communication experts, PR of established manufacturers and technology suppliers and world-class experts on the societal benefits of low carbon technologies. Together, the they will deliver HY4ALL, an ambitious programme to drive a step-change in awareness and excitement around fuel cells and hydrogen and deliver clear and consistent messages that resonate with all audiences, from policymakers to the general public. The project will be active in minimum 11 member states, and will be closely linked to the large numbers of existing hydrogen initiatives and demonstrations, maximising its impact and allowing the communication strategy to influence dissemination work beyond the project for lasting effects. The project aims will be delivered through the following activities: Development of an overarching communication strategy, that will form the basis for all subsequent project activities and will allow the FCH community to speak with one voice Creation of an interactive web portal for FCH technologies, providing a one stop shop for visitors seeking information and acting as a single brand and hub for all other dissemination activities A cross-European hydrogen for society roadshow with fuel cell vehicles travelling between cities across the EU. The roadshow will form the focal point for a variety of innovative dissemination activities, public debates, co-hosting of national vehicle and infrastructure launches A robust assessment of of the macro-economic and societal benefits of FCH technologies, providing fact-based analysis used to convey clear messages


Grant
Agency: GTR | Branch: Innovate UK | Program: | Phase: Collaborative Research & Development | Award Amount: 6.32M | Year: 2015

Using Intelligent Energy’s proven World class hydrogen fuel cell technology, this project delivers a new class of extended range zero emission light commercial vehicles freed from the range limitations of battery electric vehicles and not compromised by the harmful emissions of internal combustion engine hybridisation. The addressable market is commercially significant with fleet operators requiring zero emission vehicles to meet legislation and reduce their carbon footprint. The UK based consortium, comprising Intelligent Energy, Frost EV, Millbrook, CENEX, British Gas and DHL, has the knowledge, skills, experience and proven track record to deliver a highly integrated solution for current commercially available vehicles, with plans and infrastructure in place to quickly move from high quality prototype to volume production as early as 2018, enabling both OEM line side and retrofit options to be exploited.

Loading Intelligent Energy Ltd. collaborators
Loading Intelligent Energy Ltd. collaborators