Albuquerque, NM, United States
Albuquerque, NM, United States
SEARCH FILTERS
Time filter
Source Type

A flow cytometer apparatus and methods for detecting and clearing a clog therein are disclosed. An example method for detecting a clog may include (i) detecting, via a fault detection system of a flow cytometer, a first plurality of events associated with a first aliquot from a first sample well, (ii) determining a count of the first plurality of events associated with the first aliquot, (iii) determining whether the count of the first plurality of events is below a minimum count tolerance and (iv) (a) if the count of the first plurality of events is below the minimum count tolerance, then determining that the flow cytometer has a clog, (b) if the count of the first plurality of events is equal to or above the minimum count tolerance, then detecting a second plurality of events associated with a second aliquot from a second sample well.


Patent
Intellicyt | Date: 2017-04-12

A method and a flow cytometer system in which a light path is aligned to optimally direct light from a light source to a flow cell of a flow cytometer instrument are provided. The flow cytometer may include an orientable mirror disposed in the light path between the light source and the flow cell. By changing an orientation of the mirror through a sequence of different orientations, an optimal orientation of the mirror may be determined, and the mirror may be oriented accordingly before proceeding to conduct a flow cytometry investigation.


Methods of evaluating particle attributes in a sample fluid subjected to flow cytometry investigation in a flow cytometer instrument, methods of processing time series signal data traces output by a flow cytometer instrument, and a flow cytometer system are provided. In the methods and systems, data points comprising time series signal data traces corresponding with detection during the flow cytometry investigation of light from the sample fluid in one or more wavelength ranges indicative of the presence of one or more particle attributes in the sample fluid are batch-processed using a batch-specific signal peak threshold determined as a function of a batch-specific noise characteristic to identify signal peaks in the batch of data points indicative of the presence of the one or more particle attributes in the sample fluid.


Patent
Intellicyt | Date: 2017-04-12

A flow cytometer may include a vibration isolation structure on which a flow cytometer optical system assembly is supported when the flow cytometer is in an operational configuration. A shear protection structure may be positioned to protect a vibration isolation structure from damage during handling and shipping. A flow cytometer optical system assembly may include optical component units fixed in position on a support platform with adjustability of one or more optical features in the optical component units. A light-tight dichroic mirror unit may include a rotatably mounted dichroic mirror with a locking mechanism to permit re-setting angular positioning of a dichroic mirror.


An apparatus and method for detecting microplate well surface contact and setting standoff is provided. The apparatus may include a sample probe, coupled to a spring-loaded carriage, and a sensor configured to detect when the sample probe is in contact with a surface. The sample probe is moved toward a surface of a well in a well-plate until the sample end of the sample probe contacts the surface, whereby the carriage allows the probe to be displaced. Displacement of the probe is detected by the sensor and further downward movement of the carriage is stopped. A processor records the location of the sample probe and sets standoff based on the recorded location.


A flow cytometer apparatus and methods for detecting and clearing a clog therein are disclosed. An example method for detecting a clog may include (i) detecting, via a fault detection system of a flow cytometer, a first plurality of events associated with a first aliquot from a first sample well, (ii) determining a count of the first plurality of events associated with the first aliquot, (iii) determining whether the count of the first plurality of events is below a minimum count tolerance and (iv) (a) if the count of the first plurality of events is below the minimum count tolerance, then determining that the flow cytometer has a clog, (b) if the count of the first plurality of events is equal to or above the minimum count tolerance, then detecting a second plurality of events associated with a second aliquot from a second sample well.


One embodiment of the present invention provides for a method for identifying within a single record the location of each of a plurality of samples suspected of containing particles of interest wherein the single record is obtained from a flowing stream of the plurality of samples passing through a particle analyzer. The method comprises introducing into a conduit the plurality of samples suspected of containing particles of interest wherein each ones of the plurality of samples are separated by fluid gaps to produce a plurality of samples separated by fluid gaps and wherein each of the plurality of samples further comprises marker particles. The plurality of samples separated by fluid gaps are flowed through the conduit as a flowing sample stream to a detector of a particle analyzer. The particle analyzer is for example a flow cytometer. The particles of interest when present and/or marker particles are detected as the plurality of samples pass the detector of the particle analyzer. A record over time for the particles of interest when present and/or marker particles in each of the plurality of samples are obtained in the single file once the plurality of samples pass the incident beam of light of the particle analyzer. A time position in the record is identified where particles of interest within any one of the plurality of samples would be located if present based upon the detection of marker particles present within each combined sample from the flowing stream of the plurality of samples.


Embodiments of the present invention provide a system and method for analyzing a plurality of samples comprising obtaining with an autosampler a plurality of samples from a first plate having a plurality of sample wells wherein the autosampler has a plurality of probes for sampling a set of samples and wherein each probe of the plurality of probes is in communication with a separate flow cytometer via a separate conduit. The plurality of samples comprising particles is moved into a fluid flow stream for each separate conduit. Adjacent ones of the plurality of samples are separated from each other in the fluid flow stream by a separation gas, thereby forming a gas-separated fluid flow stream. The gas-separated fluid flow stream is independently guided to and through each separate flow cytometer.


Embodiments of the present invention provide a system and method for analyzing a plurality of samples comprising obtaining with an autosampler a plurality of samples from a first plate having a plurality of sample wells wherein the autosampler has a plurality of probes for sampling a set of samples and wherein each probe of the plurality of probes is in communication with a separate flow cytometer via a separate conduit. The plurality of samples comprising particles is moved into a fluid flow stream for each separate conduit. Adjacent ones of the plurality of samples are separated from each other in the fluid flow stream by a separation gas, thereby forming a gas-separated fluid flow stream. The gas-separated fluid flow stream is independently guided to and through each separate flow cytometer.


Patent
Intellicyt | Date: 2015-06-03

A method for identifying sample boundaries of a plurality of samples is provided. The method includes moving a plurality of samples comprising particles into a fluid flow stream using a sampling probe and introducing marker beads into the fluid flow stream between adjacent samples in the plurality of samples via the sampling probe to produce a marker bead-separated plurality of samples in the fluid flow stream. Marker beads may be introduced into the fluid flow stream by introducing the marker beads from a chamber surrounding at least a portion of the sampling probe, or by introducing the marker beads from a cartridge having a pierceable membrane underlying at least one chamber, the at least one chamber containing marker beads. Sampling systems and apparatuses are also provided.

Loading Intellicyt collaborators
Loading Intellicyt collaborators