CORVALVILLE, IA, United States
CORVALVILLE, IA, United States

Time filter

Source Type

Patent
Integrated Dna Technologies, Inc. | Date: 2016-10-21

This invention pertains to modified compositions for use in CRISPR systems, and their methods of use. In particular, length-modified and chemically-modified forms of crRNA and tracrRNA are described for use as a reconstituted guide RNA for interaction with Cas9 of CRISPR systems. The resultant length-modified and chemically-modified forms of crRNA and tracrRNA are economical to produce and can be tailored to have unique properties relevant to their biochemical and biological activity in the context of the CRISPR Cas9 endonuclease system.


Patent
Integrated Dna Technologies, Inc. | Date: 2016-10-21

This invention pertains to modified compositions for use in CRISPR systems, and their methods of use. In particular, length-modified and chemically-modified forms of crRNA and tracrRNA are described for use as a reconstituted guide RNA for interaction with Cas9 of CRISPR systems. The resultant length-modified and chemically-modified forms of crRNA and tracrRNA are economical to produce and can be tailored to have unique properties relevant to their biochemical and biological activity in the context of the CRISPR Cas9 endonuclease system.


Patent
Integrated Dna Technologies, Inc. | Date: 2016-10-21

This invention pertains to modified compositions for use in CRISPR systems, and their methods of use. In particular, length-modified and chemically-modified forms of crRNA and tracrRNA are described for use as a reconstituted guide RNA for interaction with Cas9 of CRISPR systems. The resultant length-modified and chemically-modified forms of crRNA and tracrRNA are economical to produce and can be tailored to have unique properties relevant to their biochemical and biological activity in the context of the CRISPR Cas9 endonuclease system.


Patent
Integrated Dna Technologies, Inc. | Date: 2016-03-23

The invention provides a provides improvements to assays that employ RNase H cleavage for biological applications related to nucleic acid amplification and detection, where the RNase H has been reversibly inactivated.


Patent
Integrated Dna Technologies, Inc. | Date: 2016-08-04

This invention pertains to improved methods for the synthesis of long, double stranded nucleic acid sequences containing difficult to clone or variable regions.


Patent
Integrated Dna Technologies, Inc. | Date: 2017-04-05

The present invention pertains to novel oligonucleotide compounds for use in various biological assays, such as nucleic acid amplification, ligation and sequencing reactions. The novel oligonucleotides comprise a ribonucleic acid domain and a blocking group at or near the 3 end of the oligonucleotide. These compounds offer an added level of specificity previously unseen. Methods for performing nucleic acid amplification, ligation and sequencing are also provided. Additionally, kits containing the oligonucleotides are also disclosed herein.


Patent
City Of Hope and Integrated Dna Technologies, Inc. | Date: 2016-09-08

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (dsRNA), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.


Patent
City Of Hope and Integrated Dna Technologies, Inc. | Date: 2016-06-13

The invention provides compositions and methods for selectively reducing the expression of a gene product from a desired target gene, as well as treating diseases caused by expression of the gene. The method involves introducing into the environment of a cell an amount of a double-stranded RNA (dsRNA) such that a sufficient portion of the dsRNA can enter the cytoplasm of the cell to cause a reduction in the expression of the target gene. The dsRNA has a first oligonucleotide sequence that is between 26 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of from about 19 to about 23 nucleotides is complementary to a nucleotide sequence of the RNA produced from the target gene.


Patent
Integrated Dna Technologies, Inc. | Date: 2015-12-18

This invention pertains to modified compositions for use in CRISPR systems, and their methods of use. In particular, length-modified and chemically-modified forms of crRNA and tracrRNA are described for use as a reconstituted guide RNA for interaction with Cas9 of CRIPSR systems. The resultant length-modified and chemically-modified forms of crRNA and tracrRNA are economical to produce and can be tailored to have unique properties relevant to their biochemical and biological activity in the context of the CRIPSR Cas9 endonuclease system.


Patent
Integrated Dna Technologies, Inc. | Date: 2015-07-22

The invention pertains to modifications for antisense oligonucleotides, wherein the modifications are used to improve stability and provide protection from nuclease degradation. The modifications could also be incorporated into double-stranded nucleic acids, such as synthetic siRNAs and miRNAs.

Loading Integrated Dna Technologies, Inc. collaborators
Loading Integrated Dna Technologies, Inc. collaborators