Hayward, CA, United States

Intarcia Therapeutics

www.intarcia.com
Hayward, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Intarcia Therapeutics | Date: 2016-11-09

An osmotic delivery system flow modulator includes an outer shell constructed and arranged for positioning in an opening, an inner core inserted in the outer shell, and a fluid channel having a spiral shape defined between the outer shell and the inner core. The fluid channel is adapted for delivery of an active agent formulation from the reservoir of the osmotic delivery system.


Patent
Intarcia Therapeutics | Date: 2016-11-01

A nonaqueous, single-phase vehicle that is capable of suspending an active agent. The nonaqueous, single-phase vehicle includes at least one solvent and at least one polymer and is formulated to exhibit phase separation upon contact with an aqueous environment. The at least one solvent may be selected from the group consisting of benzyl benzoate, decanol, ethyl hexyl lactate, and mixtures thereof and the at least one polymer may be selected from the group consisting of a polyester, pryyolidone, ester of an unsaturated alcohol, ether of an unsaturated alcohol, polyoxyethylenepolyoxypropylene block copolymer, and mixtures thereof. In one embodiment, the at least one solvent is benzyl benzoate and the at least one polymer is polyvinylpyrrolidone. A stable, nonaqueous suspension formulation that includes the nonaqueous, single-phase vehicle and an active agent, and a method of forming the same, are also disclosed.


The present invention relates to osmotic delivery devices, formulations, and methods for delivery of two or more beneficial agents. In one aspect, the present invention provides osmotic delivery devices useful for substantially concurrent administration of two or more beneficial agents. In another aspect, the present invention provides beneficial agent formulations for use in the osmotic delivery devices. The formulations include formulations wherein beneficial agents are soluble in the vehicle, suspension formulations comprising particle formulations of one or more beneficial agent, and combinations thereof. Further, methods for treatment of a variety of diseases or conditions using two or more beneficial agents are disclosed, wherein the methods are preferably practiced using the osmotic delivery devices and/or formulations of the invention.


A suspension formulation of an insulinotropic peptide (e.g., glucagon-like peptide-1 (GLP-1) or exenatide) is described. The suspension formulation comprises (i) a non-aqueous, single-phase vehicle, comprising one or more polymer and one or more one solvent, wherein the vehicle exhibits viscous fluid characteristics, and (ii) a particle formulation comprising the insulinotropic peptide, wherein the peptide is dispersed in the vehicle. The particle formulation further includes a stabilizing component comprising one or more stabilizers, for example, carbohydrates, antioxidants, amino acids, and buffers. Devices for delivering the suspension formulations and methods of use are also described.


Highly concentrated drug particle formulations are described, wherein the drug comprises between about 25 wt % and 80 wt % of the particle formulation. The particle formulations of the present invention comprise, for example, macromolecules, such as proteins and/or small molecules (such as steroid hormones). The particle formulation typically further includes one or more additional component, for example, one or more stabilizer (e.g., carbohydrates, antioxidants, amino acids, and buffers). Such concentrated particle formulations can be combined with a suspension vehicle to form suspension formulations. The suspension formulation comprises (i) a non-aqueous, single-phase vehicle, comprising one or more polymer and one or more one solvent, wherein the vehicle exhibits viscous fluid characteristics, and (ii) a highly concentrated drug particle formulation. Devices for delivering the suspension formulations and methods of use are also described. The present invention provides needed improvements in drug formulation and delivery to improve patient compliance and expand drug availability.


This invention relates to stable non-aqueous single phase viscous vehicles and to formulations utilizing such vehicles. The formulations comprise at least one beneficial agent uniformly suspended in the vehicle. The formulation is capable of being stored at temperatures ranging from cold to body temperature for long periods of time. The formulations are capable of being uniformly delivered from drug delivery systems at en exit shear rate of between about 1 to 110^(7 )reciprocal second.


Highly concentrated drug particle formulations are described, wherein the drug comprises between about 25 wt % and 80 wt % of the particle formulation. The particle formulations of the present invention comprise, for example, macromolecules, such as proteins and/or small molecules (such as steroid hormones). The particle formulation typically further includes one or more additional component, for example, one or more stabilizer (e.g., carbohydrates, antioxidants, amino acids, and buffers). Such concentrated particle formulations can be combined with a suspension vehicle to form suspension formulations. The suspension formulation comprises (i) a non-aqueous, single-phase vehicle, comprising one or more polymer and one or more one solvent, wherein the vehicle exhibits viscous fluid characteristics, and (ii) a highly concentrated drug particle formulation. Devices for delivering the suspension formulations and methods of use are also described. The present invention provides needed improvements in drug formulation and delivery to improve patient compliance and expand drug availability.


Patent
Intarcia Therapeutics | Date: 2015-06-24

A nonaqueous, single-phase vehicle that is capable of suspending an active agent. The nonaqueous, single-phase vehicle includes at least one solvent and at least one polymer and is formulated to exhibit phase separation upon contact with an aqueous environment. The at least one solvent may be selected from the group consisting of benzyl benzoate, decanol, ethyl hexyl lactate, and mixtures thereof and the at least one polymer may be selected from the group consisting of a polyester, pyrrolidone, ester of an unsaturated alcohol, other of an unsaturated alcohol, polyoxyethylenepolyoxypropylene block copolymer, and mixtures thereof. In one embodiment, the at least one solvent is benzyl benzoate and the at least one polymer is polyvinylpyrrolidone. A stable, nonaqueous suspension formulation that includes the nonaqueous, single-phase vehicle and an active agent, and a method of forming the same, are also disclosed.


The present invention is directed to treatment methods for a disease or condition, in a subject in need of such treatment, that provide alternatives to treatment by injection that give, relative to treatment by injection, improved treatment outcomes, 100% treatment compliance, reduced side effects, and rapid establishment and/or termination of substantial steady-state drug delivery. The method typically includes providing continuous delivery of a drug from an implanted osmotic delivery device, wherein substantial steady-state delivery of the drug at therapeutic concentrations is typically achieved within about 7 days or less after implantation of the osmotic delivery device in the subject and the substantial steady-state delivery of the drug from the osmotic delivery device is continuous over a period of at least about 3 months. In one embodiment, the present invention is directed to treatment of type 2 diabetes mellitus using incretin mimetics.


Patent
Intarcia Therapeutics | Date: 2016-06-02

Devices, methods, and systems are provided for placing an implant into a patient and removing it therefrom.

Loading Intarcia Therapeutics collaborators
Loading Intarcia Therapeutics collaborators