Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2011.1.2-03 | Award Amount: 3.91M | Year: 2012

There is a need to improve sustainability in farming systems particularly through soil care and improvement, but not at the expense of productivity. One approach is to focus on a comprehensive advance in conservation tillage. This will be developed from improved ways of integrating subsidiary crops (SC) as living or dead mulches or cover crops with the main crops in rotations so as to simultaneously improve crop nutrition, health, and productivity. The SC will deliver multiple ecological services by increasing the duration of soil cover in the rotation overall while increasing species diversity, minimising the use of tillage and agrochemicals, enhancing biological N fixation and soil C content, and both reducing water demand in dry climates and improving soil workability in wetter climates. The research will draw on a wide range of previous and ongoing EU and related projects and will be based on 11 coordinated field experiments in different climatic regions together with three long-term experiments in Europe and Brazil. These experiments will all be assessed for economic and ecological impact including the often neglected issue of legume root health. Breeding companies and manufacturers of agricultural equipment from all regions of interest will be involved in finding adapted solutions for the different environments by extending the range of potentially useful plant species and by developing appropriate machinery to promote adoption in practical agriculture. The potential for useful chemical extraction from the existing and novel SCs will also be investigated. A central deliverable will be a database supported Cover Crop and Living Mulch Toolbox and Decision Support Tool which will encourage multilingual stakeholder exchange and dissemination during and beyond the lifetime of the project so as to capture farmer experience. The results of the project as a whole will be of use for and improve sustainability in low-input, organic, and conventional farming systems.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: RUR-10-2016-2017 | Award Amount: 2.00M | Year: 2017

Agroforestry (AF) is the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions. Research activities developed by AFINET partners indicates that appropriate application of AF principles and practices is a key avenue to help the European Union to achieve more sustainable methods of food and fibre production, producing both profits for farmers and environmental benefits. However up to now exists a lack of AF knowledge among end-users that prevent the correct implementation of these practices. In this sense AFINET will act at EU level in order to take up research results into agricultural practice, improving knowledge exchange between scientists and practitioners on AF activities, with a special focus on silvoarable and silvopastoral systems design, management, and production and profitability. To achieve this objective AFINET consortium proposes an innovative methodology based on: (i) The creation of a EU reservoir of scientific and practical knowledge of AF with an end-user-friendly access (the Knowledge Cloud). (ii) The creation of a European Interregional network (composed of Regional Agroforestry Innovation Networks - RAINs) considering a multi-actor approach (including farmers, policy makers, advisory services, extension services, etc.), and articulated through the figure of the Innovation Broker. These RAINs groups will be interconnected in nine strategic regions of Europe from Spain, UK, Belgium, Portugal, Italy, Hungary, Poland, France and Finland, representing different climatic, geographical, social, and cultural conditions at European level. In addition, to create a greater user acceptance of the collected solutions and an intensive dissemination to end-users, AFINET will be linked to other networks, initiatives and policy instruments at regional, national and European level with a specific focus on the EIP-AGRI implementation.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2011.1.4-06 | Award Amount: 4.19M | Year: 2012

Agricultural production faces numerous challenges regarding competitiveness, conserving natural and non-renewable resources (water, soil, air, phosphorus, fossil fuels) and ecosystem services (pollination, natural pest control, soil fertility). Society also expects from agriculture to be more environment-friendly in several issues such as climatic change, declining biodiversity, fossil energy depletion, and water shortage. To overcome these limitations, CANTOGETHER will design innovative sustainable mixed farming systems (MFS). A design-assessment-adjustment iterative cycle will be adopted to ensure continuous validation and improvement of the innovative investigated MFS through a participative approach involving stakeholders and researchers across Europe. It will bring together a European network of 24 existing experimental and commercial farms covering a wide diversity of natural and socio-economic conditions in which the most promising MFS will be implemented in order to verify their practicability and to perform an in-depth integrated assessment (economic and environmental). The MFS will be designed for individual farm level or collective implementation at the territorial level. At the same time, CANTOGETHER will define recommendations for a common agricultural policy promoting the development of these MFS. The innovative analysed MFS will be based on the simultaneous utilization of crops (cash, feed and energetic) and various rearing animals with full recycling practices of animal wastes in view to ensure high resource-use efficiency (notably of nutrients), reduction in dependence on external inputs (fertilisers, pesticides, concentrated feeds), and acceptable environmental and economic performances. CANTOGETHER will produce a complete picture of their effects and will facilitate their adoption by jointly involving researchers and the key actors of the agricultural sector (farmers, advisors, policy makers, and actors of the food supply chain).


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2013.3.7.1 | Award Amount: 5.16M | Year: 2013

The main aim of this project is to support the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a computerized and easy to use toolset (and respective databases) with update harmonized datasets at local, regional, national and pan European level for EU27, western Balkans, Turkey and Ukraine. It will do so by comparing and making use of the most recent relevant information from recent and ongoing EU projects by a set of carefully selected validation case studies and in concise collaboration with key stakeholders from policy, industry and markets.The project fits under the overall umbrella of the Europe 2020 strategy for the building of a bioeconomy, as well as the targets for deployment of renewable energies and reduction of greenhouse gas emissions.The project will build up a concise knowledge base both for the sustainable supply and logistics of nonfood biomass (quantities, costs, technological pathway options for 2020 and beyond), for the development of technology and market strategies to support the development of a resource efficient Bioeconomy for Europe. This includes industrial processes (i.e. bio-based industries) for manufacturing biomass-derived goods/products as well as energy conversion, both for large scale and small scale units.The research work will be organized in three individual but strongly interrelated Themes: Theme 1 will focus on methodological approaches, data collection and estimation of sustainable biomass potentials, resource efficient pathways and optimal logistical supply routes as well as will develop the computerized toolset. Theme 2 will make use of the findings of Theme 1 and develop a Vision, Strategies and an R&D roadmap for the sustainable delivery of non-food biomass feedstock at local, regional and pan European level. Theme 3 will validate the findings from Themes 1 and 2 and ensure the project outreach


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENERGY.2011.3.7-1 | Award Amount: 7.10M | Year: 2012

Increasing the share of biomass for renewable energy in Europe demands conversion pathways which are economic, flexible in feedstock and energy efficient. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonisation to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-31 GJ/m3, enabling central GW scale gasification plants for biofuel production. The catalytic pyrolysis reduces oxygenates in the oil to 13% enabling power and refinery applications. The fast pyrolysis and HTC processes of demo-size (0.5-1 t/h) are optimized for feedstock flexibility, yield, quality and further upscaling is studied. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimisation of products and processes. Application of energy carriers is investigated in existing and coming applications of heat and power production, synthetic fuels&chemicals and as biocrude for refineries. Promising pathways will be demonstrated over the whole chain. A market implementation scheme of ramping up energy carrier production and subsequent phase in of large scale gasification is developed regarding optimal technical and economic performance. Separation of nutrients and chemicals further increase economics. Seven industrial companies, three of which SME and six R&D institutions from 7 European countries cover expertise along the complete chain: Feedstock, conversion processes, separation and upgrading, transport & logistics, end usage and value chain assessment. Conversion plants in demonstration size will enable the proof of concept and further up-scaling to commercial size.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: KBBE.2011.1.2-01 | Award Amount: 3.66M | Year: 2012

The Catch-C project assesses the farm-compatibility of Best Management Practices (BMPs) that aim to promote productivity, climate change mitigation, and soil quality. These are the three overall goals of sustainable soil management. Catch-C will first (WP2) set up a typology of the main farm types and agro-ecological zones across Europe. This frame, coupled to a pan-European database of socio-economic and biophysical data, will be used for spatially organising the information collected on current management; and for up-scaling the impacts expected from changes in management. Biophysical impacts of management practices will be assessed (WP3) primarily from a large set of current field experiments, executed by the participants. BMPs will be formulated, along with their trade-offs and synergies between productivity, climate change mitigation, and soil quality. Farmers, however, often do not adopt BMPs. Identifying the barriers against adoption, and formulating ways to remove these, are core activities of the project (WP4). Catch-C will survey farmer views on BMPs in all participant countries, assess costs and benefits of implementation, identify technical and ecological bottlenecks preventing adoption, develop a decision support tool, and prioritize innovation requirements to address bottlenecks. Policy measures can promote adoption in various ways, such as voluntary measures, regulation, and economic incentives. In interaction with policy makers, Catch-C will develop (WP5) guidelines for policies that will support the adoption of BMPs; and that are consistent with regional agro-ecological and farming contexts. Dissemination (WP6) includes scientific publication; discussing project results with farmers and policy makers; making information about BMPs and their adoption available to a wider audience; and stimulating awareness about the pros and cons of BMPs for different farm types and environments in participant countries.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.6.2-4 | Award Amount: 10.92M | Year: 2013

Although there is a large body of knowledge available on soil threats in Europe, this knowledge is fragmented and incomplete, in particular regarding the complexity and functioning of soil systems and their interaction with human activities. The main aim of RECARE is to develop effective prevention, remediation and restoration measures using an innovative trans-disciplinary approach, actively integrating and advancing knowledge of stakeholders and scientists in 17 Case Studies, covering a range of soil threats in different bio-physical and socio-economic environments across Europe. Within these Case Study sites, i) the current state of degradation and conservation will be assessed using a new methodology, based on the WOCAT mapping procedure, ii) impacts of degradation and conservation on soil functions and ecosystem services will be quantified in a harmonized, spatially explicit way, accounting for costs and benefits, and possible trade-offs, iii) prevention, remediation and restoration measures selected and implemented by stakeholders in a participatory process will be evaluated regarding efficacy, and iv) the applicability and impact of these measures at the European level will be assessed using a new integrated bio-physical and socio-economic model, accounting for land use dynamics as a result of for instance economic development and policies. Existing national and EU policies will be reviewed and compared to identify potential incoherence, contradictions and synergies. Policy messages will be formulated based on the Case Study results and their integration at European level. A comprehensive dissemination and communication strategy, including the development of a web-based Dissemination and Communication Hub, will accompany the other activities to ensure that project results are disseminated to a variety of stakeholders at the right time and in the appropriate formats to stimulate renewed care for European soils.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: BB-06-2016 | Award Amount: 996.06K | Year: 2017

BioReg project proposes to create a platform of stakeholders who are able to influence and develop their regions towards bio-based industries and products. Demonstrator case studies have been selected among European regions Gothenburg, (SE); Karlsruhe, Baden-Wurttember (Ge), Lombardy, Emilia-Romagna (IT), North West England (UK) and Vorarlberg and Syria, Austria. Those have set up renewable wood waste-based systems at different stages of the waste wood value chain including different wood waste source, pre-sorting, sorting, collection, recycling and wood waste treatment (to materials, biochemicals or biofuels) as well as the different gradings and regional wood waste composition in each country. 3 recipient regions were selected for this project in regards to their unused waste wood potential: Normandy (France), Lublin (Poland), Andalucia (Spain). The BioReg platform will function on two levels. On the EU level: best practices in terms of strategies and technologies as well as implementing mechanisms will be shared with the beneficiary recipient regions on the project and disseminated to many other potential regions in the EU (EUBIA). The platform will will encourage the collaboration of members and stakeholders on the European level. On the regional level: the best practices will be replicated in the three beneficiary regions. The proposal offers collaboration with regional existing clusters, constructive dialogue with regional authorities and policy makers, industrial and RTD establishments in the recipient regions. It will mobilize the recipient regions to develop the existing potential for industrial innovative projects and build bio-based ecosystems. Industries, regions and investors will be brought together to establish an efficient dialogue so that demand and supply can be aligned and large impact projects can be realized. The project proposes mechanisms to engage the stakeholders in collaboration also after the EU funding on BioReg is over.


The overall aim of ENORASIS is to develop an intelligent, integrated Decision Support System (ENORASIS Service Platform and Components) for environmentally optimized and, thus, sustainable irrigation management by farmers and water management organizations. ENORASIS system will actually target to motivate irrigation farmers to optimize the use of water, whereas it will also provide to (irrigation) water management organizations intelligent tools and services to effectively forecast and manage irrigation water resources, cover irrigation demand and charge customers (farmers) on the basis of an intelligent system of motives and incentives that exploits irrigation demand side fluctuations. To achieve so, ENORASIS will develop and integrate a bouquet of advanced technologies, methodologies and models in the fields of: (i) weather prediction systems that exploit satellite observations; (ii) irrigation optimization techniques and (iii) smart irrigation systems in order to arrive at a solution that will be easy to use for farmers and that will be flexible and robust enough for its use by irrigation water management organizations; and (iv) wireless sensor networks (functioning with solar energy) as key enabling technology for field measurements and monitoring conditions. Such an intelligent irrigation management and charging system is expected to have a major impact towards the adoption of more sustainable irrigation water management practices in agriculture and thus, increased environmental protection and costs savings for all stakeholders involved in agricultural economy. Finally, the ENORASIS project will be implemented over a period of 36 months by a multi-disciplinary and well-balanced consortium of 13 partners, including academic partners, research centers & institutes, SMEs as well as end-users (water management organization).

Loading Instytut Uprawy Nawozenia i Gleboznawstwa collaborators
Loading Instytut Uprawy Nawozenia i Gleboznawstwa collaborators