Instytut Technologii Materialow Elektronicznych

Warsaw, Poland

Instytut Technologii Materialow Elektronicznych

Warsaw, Poland

Time filter

Source Type

Patent
Szkola Glowna Gospodarstwa Wiejskiego and Instytut Technologii Materialow Elektronicznych | Date: 2015-02-05

The present invention relates to a water suspension of graphene oxide nanoflakes decorated by nanoparticles of metallic platinum, characterised in that it comprises: 100 g/ml to 500 g/ml of graphene oxide nanoflakes, 5 g/ml to 50 g/ml of nanoparticles of metallic platinum (Pt), deposited on the surface of graphene oxide nanoflakes. The invention also relates to a method of preparing such suspension and its use as an antitumor agent.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ICT-2013.3.2 | Award Amount: 10.08M | Year: 2013

ACTPHAST is a unique one-stop-shop European access centre for photonics innovation solutions and technology support (Access CenTre for PHotonics innovAtion Solutions and Technology support). ACTPHAST will support and accelerate the innovation capacity of European SMEs by providing them with direct access to the expertise and state-of-the-art facilities of Europes leading photonics research centres, enabling companies to exploit the tremendous commercial potential of applied photonics. Technologies available within the consortium range from fibre optics and micro optics, to highly integrated photonic platforms, with capabilities extending from design through to full system prototyping. ACTPHAST has been geographically configured to ensure all of Europes SMEs can avail of timely, cost-effective, and investment-free photonics innovation support, and that the extensive range of capabilities within the consortium will impact across a wide range of industrial sectors, from communications to consumer-related products, biotechnology to medical devices. The access of predominantly SMEs to top-level experts and leading photonics technology platforms provided by the ACTPHAST consortium will be realised through focused innovation projects executed in relatively short timeframes with a critical mass of suitably qualified companies with high potential product concepts. As a result of these projects, the programme is expected to deliver a substantial increase in the revenues and employment numbers of the supported companies by supporting the development of new product opportunities and addressing emerging markets. Furthermore, through its extensive outreach activities, the programme will ensure there is an increased level of awareness and understanding across European industries of the technological and commercial potential of photonics.


Grant
Agency: European Commission | Branch: FP7 | Program: CPCSA | Phase: ICT-2013.9.9 | Award Amount: 74.61M | Year: 2013

This Flagship aims to take graphene and related layered materials from a state of raw potential to a point where they can revolutionize multiple industries from flexible, wearable and transparent electronics, to new energy applications and novel functional composites.\nOur main scientific and technological objectives in the different tiers of the value chain are to develop material technologies for ICT and beyond, identify new device concepts enabled by graphene and other layered materials, and integrate them to systems that provide new functionalities and open new application areas.\nThese objectives are supported by operative targets to bring together a large core consortium of European academic and industrial partners and to create a highly effective technology transfer highway, allowing industry to rapidly absorb and exploit new discoveries.\nThe Flagship will be aligned with European and national priorities to guarantee its successful long term operation and maximal impact on the national industrial and research communities.\nTogether, the scientific and technological objectives and operative targets will allow us to reach our societal goals: the Flagship will contribute to sustainable development by introducing new energy efficient and environmentally friendly products based on carbon and other abundant, safe and recyclable natural resources, and boost economic growth in Europe by creating new jobs and investment opportunities.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA | Phase: ICT-2009.3.7 | Award Amount: 1.84M | Year: 2010

Micro-optics holds tremendous potential for SMEs and large companies to develop competitive products and to boost product innovation. Micro-optics however continuously requires advanced knowledge as well as a complex technology supply chain, which are very often not affordable. This project targets to pro-actively provide companies with timely, cost-effective, investment-free Access to a unique one-stop-shop European Centre To Micro-Optics Expertise, Services and Technologies ACTMOST. The access of predominantly SMEs to leading edge technology and knowledge provided by the ACTMOST partners will be realized by them through focused collaborations in so called user projects and through hands-on training of industry staff in highly advanced laboratories of the ACTMOST research institutions. ACTMOST also targets to develop a business model which would enable continuation of SME and company support without public funding. As such ACTMOST intends to be a major driving force to sustainably support European industry in keeping a leading position in micro-optic and micro-photonic enhanced products, thus strengthening the competitiveness of Europe and creating new jobs.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 4.02M | Year: 2016

SUPercontinuum broadband light sources covering UV to IR applications (SUPUVIR) will combine the efforts of 6 academic and 4 non-academic beneficiaries to train 15 ESRs for the growing industry within SC broadband light sources, giving them extensive knowledge in silica and soft-glass chemistry, preform design and fibre drawing, linear and nonlinear fibre and waveguide characterization, nonlinear fibre optics, SC modelling, SC system design, patent protection, and in-depth knowledge of a broad range of the main applications of SC high-power broadband light sources. The strong blend of academic and non-academic sectors in the consortium will give the ESRs a unique chance to develop a wide set of technical and transferrable skills, thus preparing them for long-time employment in the sector (academic or industry). Scientifically, SUPUVIR aims at solving current challenges preventing SC light sources from taking over key market shares or from being used for cutting-edge research . Specifically the objectives are to reduce noise and increase pulse energy of SC modules, as well as investigate SC generation in emerging wavelength regimes (UV and mid-IR) including fabrication of novel fibres and waveguides, and finally using SC sources for applications as to gain valuable knowledge of application requirements. This research and development will give improved SC sources and SC spectra enabling new science and applications for optical imaging, spectroscopy, sensing and control, e.g. optical coherence tomography, IR multimodal spectroscopy, confocal and fluorescence microscopy, photoacoustic imaging and food quality control.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-26-2014 | Award Amount: 3.59M | Year: 2015

Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing a novel Mid-IR Si-based photonic integrated circuit filter and wide-band Mid-IR SLEDs, we aim at demonstrating an innovative light source that covers 2.73.5 m wavelength range with a resolution < 1nm. The spectral bands are switchable and tuneable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high-volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. In safety and security applications, the Mid-IR wavelength range covered by the source allows for the detection of several harmful gas components with a single sensor. The project is filling a gap: affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity. At the foreseen price level, the proposed approach is extremely competitive against conventional gas sensors. The source will be validated in several key applications including building ventilation, high voltage asset monitoring, emission monitoring, gas leakage monitoring as well as process control and safety. The consortium is composed of one large European company, three SMEs, and three world-class research organisations from three European countries representing the complete value chain from devices and components to gas sensor manufacturers. The position of these organizations in their respective markets guarantees that the project results will be widely exploited providing the companies with a technological advantage over their worldwide competitors thus creating new high-tech jobs and technology leadership in Europe.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ICT-2013.9.3 | Award Amount: 1.18M | Year: 2013

To pave the way towards the widespread application of on-chip mid-infrared(MIR)-pumped nonlinear supercontinuum light sources, we want to introduce a paradigm shift in integrated nonlinear optics. Rather than relying on non-standard waveguide designs, large waveguide footprints, bulky MIR pump lasers and/or limited spectral coverage in strategies that could never comply with the requirements for widespread deployment, we target a major advance based on novel material physics and device design, eliminating these issues. Our goal is to develop a near-infrared(NIR)- and MIR-emitting, ultra-compact on-chip supercontinuum light source by exploiting practically unexplored optical nonlinearities of standard silicon waveguides covered with graphene. This groundbreaking dual-band source will be realized by cascading two devices which are based on graphene-covered standard silicon waveguides, and which enable for the first time broadband self-phase modulation in the MIR and power-efficient second harmonic generation in the NIR within an ultra-compact chip footprint. To ensure that the entire supercontinuum device including the pump laser is compact, we will in addition develop a novel, small-sized, and practical modelocked MIR Tm-Ho fiber laser to pump the supercontinuum generation. These breakthroughs carry a highly novel and foundational character, and fit very well within the framework of the FET Open FP7-ICT-2013-C call. Since the partners involved in this project have both the knowledge and the equipment to model, design, fabricate and pump graphene-based nonlinear optical devices, our consortium holds all necessary skills required to successfully carry out this high-gain/high-risk project. In doing so, we will lay the foundations for graphene-on-silicon-based nonlinear photonic integrated circuits, and at the same time pave the way to the extensive use of on-chip supercontinuum light sources in real-life applications.

Loading Instytut Technologii Materialow Elektronicznych collaborators
Loading Instytut Technologii Materialow Elektronicznych collaborators