Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: NMP.2010.1.2-4 | Award Amount: 4.04M | Year: 2010

Silver nanoparticles and silver based nanostructured composites are being frequently used in a variety of biomedical and industrial applications, such as an antimicrobial agents, lead-free solders, electric contact materials, gas-sensitive sensor, etc. The most complicated Silver using problems are related to: i) recovery of silver from ore waste materials; ii) the controlled synthesis of metal nanoparticles of well-defined size, shape and composition; iii) nanoparticles incorporation to desired implant surfaces; iv) synthesis of Silver based nanostructured composites for industrial purposes. The main goal of the Project is to develop: 1. Clean and efficient procedure of silver recovery from waste: Combined Mechanical Activation Thermal Oxidation Processing jarosite type residues to alleviate and accelerate the following precious metal leaching; 2. Combined nanotechnology of biological synthesis (use of plants for the nanoparticles synthesis) of Ag nanoparticles and its deposition on implant surfaces by electrophoretic and plasma spraying deposition; 3. Nanostructuring technology of Silver based nanocomposites manufacturing for electrical contact applications. Pilot production and trials of developed Ag nanoparticle modified implants and Ag based nanostructured composites: 1. TiO2 and Hydroxyapatite Ca10(PO4)6(OH)2) coated implants which are widely used in orthopaedic surgery because of their good biocompatibility related to the osteoconductive properties of calcium phosphate coating; 2. Ag-SnO contacts for electrical systems; these composites combine high resistance to welding and to electric arch erosion of the refractory phases with the high electric and thermal conductivities.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: WASTE-4d-2015 | Award Amount: 1.50M | Year: 2015

Refractory metals (tungsten, tantalum, rhenium, molybdenum and niobium) are highly strategic metals today mainly imported from a few countries. The European primary production remains below a few percentage. However, resources exist in Europe, as primary resources but mainly as secondary resources (industrial waste, urban mines). Valorizing these resources requires coordination and networking between researchers, entrepreneurs and public authorities to harmonise technologies, processes and services, develop standards, create new potential for export of eco-innovative solutions and for seizing new markets MSP-REFRAM will address these challenges by creating of a common multi-stakeholder platform that will draw the current refractory metals value chains and identify its innovation potential in order to support the implementation of the EIP on Raw Materials. Coming from industry, research, public sectors and civil society, both Consortium Members and External Experts have joined forces with expertise covering the whole value chain including mining, processing, recycling, application. The outputs of MSP-REFRAM will help Europe improve the supply value chain of refractory metals in the coming years, optimising the use of external resources as energy and water and at the same time reducing the amount and the toxicity of waste. MSP-REFRAM will share its conclusions widely and efficiently, in a long lasting way thanks to the support of the PROMETIA association. To ensure the systemic change, the outcomes of the project will be made available to the stakeholders and to the public through different tools and reports. In the medium term, MSP-REFRAM will contribute to better-informed decision-making at EU and national level as well as industry by proposing innovative value chains that will boost the refractory metals sector. In the longer term, this should improve the availability of these refractory metals, while creating greater added value to the economy and more jobs.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SC5-15-2016-2017 | Award Amount: 3.00M | Year: 2016

Since the publication of the first list of Critical Raw Materials (CRM) in 2010 by the Ad-hoc Working Group on CRM, numerous European projects have addressed (part of) the CRMs value and several initiatives have contributed to gather (part of) the related community into clusters and associations. This led to the production of important knowledge, unfortunately disseminated. Numerous databases have also been developed, sometimes as duplicates. For the first time in the history, SCRREEN aims at gathering European initiatives, associations, clusters, and projects working on CRMs into along lasting Expert Network on Critical Raw Materials, including the stakeholders, public authorities and civil society representatives. SCRREEN will contribute to improve the CRM strategy in Europe by (i) mapping primary and secondary resources as well as substitutes of CRMs, (ii) estimating the expected demand of various CRMs in the future and identifying major trends, (iii) providing policy and technology recommendations for actions improving the production and the potential substitution of CRM, (iv) addressing specifically WEEE and other EOL products issues related to their mapping and treatment standardization and (vi) identifying the knowledge gained over the last years and easing the access to these data beyond the project. The project consortium also acknowledges the challenges posed by the disruptions required to devlop new CRM strategies, which is why stakeholder dialogue is at the core of SCRREEN: policy, society, R&D and industrial decision-makers are involved to facilitate strategic knowledge-based decisions making to be carried out by these groups. A specific attention will also be brought on informing the general public on our strong dependence on imported raw materials, on the need to replace rare materials with substitutes and on the need to set up innovative and clean actions for exploration, extraction, processing and recycling.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: NMP-2008-4.0-5 | Award Amount: 17.23M | Year: 2009

The objectives of the ProMine IP address the Commissions concerns over the annual 11 billion trade deficit in metal and mineral imports. Europe has to enhance the efficiency of its overall production chain putting higher quality and added value products on the market. ProMine focuses on two parts of this chain, targeting extractive and end-user industries. Upstream, the first ever Pan-EU GIS based mineral resource and advanced modelling system for the extractive industry will be created, showing known and predicted, metallic and non-metallic mineral occurrences across the EU. Detailed 4D computer models will be produced for four metalliferous regions. Upstream work will also include demonstrating the reliability of new (Bio)technologies for an ecoefficient production of strategic metals, driven by the creation of on-site added value and the identification of specific needs of potential end-users. Downstream, a new strategy will be developed for the European extractive industry which looks not only at increasing production but also at delivering high value, tailored nano-products which will form the new raw materials for the manufacturing industry. ProMine research will focus on five nano-products, (Conductive metal (Cu, Ag, Au) fibres, rhenium and rhenium alloy powders, nano-silica, iron oxyhydroxysulphate and new nano-particle based coatings for printing paper), which will have a major impact on the economic viability of the extractive industry. They will be tested at bench scale, and a number selected for development to pilot scale where larger samples can be provided for characterisation and testing by end-user industries. It will include production, testing and evaluation of these materials, with economic evaluation, life cycle cost analysis, and environmental sustainability. ProMine with 26 partners from 11 EU member states, has a strong industrial involvement while knowledge exploitation will transfer ProMine results to the industrial community.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11e-2015 | Award Amount: 7.84M | Year: 2016

The INTMET approach represents a unique technological breakthrough to overcome the limitations related to difficult low grade and complex ores to achieve high efficient recovery of valuable metals (Cu, Zn, Pb, Ag) and CRM (Co, In, Sb). Main objective of INTMET is applying on-site mine-to-metal hydroprocessing of the produced concentrates enhancing substantially raw materials efficiency thanks to increase Cu\Zn\Pb recovery over 60% vs. existing selective flotation. 3 innovative hydrometallurgical processes (atmospheric, pressure and bioleaching), and novel more effective metals extraction techniques (e.g. Cu/Zn-SX-EW, chloride media, MSA, etc) will be developed and tested at relevant environment aiming to maximise metal recovery yield and minimising energy consumption and environmental footprint. Additionally secondary materials like tailings and metallurgical wastes will be tested as well for metals recovery and sulphur valorisation. The technical, environmental and economic feasibility of the entire approaches will be evaluated to ensure a real business solution of the integrated INTMET process. INTMET will be economically viable thanks to diversification of products (Cu, Zn, Pb), high-profitable solution (producing commodities not concentrates), with lower operation and environmental costs (on-site hydroprocessing will avoid transport to smelters) and allowing mine-life extension developing a new business-model concept based on high efficient recovery of complex ores that will ensure EU mining industry competitiveness and employment. INTMET is fully aligned with EIP-RM validated in the PolymetOre Commitment where most of INTMET partners take part on and the market up-take solutions are guaranteed by an exploitation from industrially-driven consortia composed by 3 Mines, 2 SMEs (AGQ -waste&water tech provider; MINPOL -policy & exploitation expert), 2 tech providers (OUTOTEC and TR) and 5 complementary RTDs with expertise in leaching and recovery metals processing


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-CA | Phase: NMP.2012.2.3-1 | Award Amount: 1.34M | Year: 2012

Currently, there is a lack of consistent coordination between the activities of the various ETPs, which has led to a diverse range of ideas as to what is important to European materials developments, and consequently a somewhat fragmented support for these developments. In 2010, a group of ETPs (EuMaT, Suschem, Manufuture, FTC, ESTEP and SMR) with most significant material agenda, came together to create an Alliance for Materials (A4M). The driver for this collaboration was to ensure a Value Chain coverage to improve the speed of implementation of innovations in Europe that address the Grand Societal Challenges but with a clear attention to the competitiveness aspects too, in agreement with at least two of the pillars of Horizon 2020. Among the fundamental concepts of A4M is the Value Chain concept. It is regarded as the key element driving synergistic benefits through a common path which integrates players, resources and strategies starting from the fundamental aspects of materials science up to the industrial system that produces and/or transforms materials into valuable products. Alliance for Materials initiatives (A4M) is a new way of thinking; a partnership and networking in Materials Research and Innovation. With the MatVal proposal, A4M intends to enter into its crucial implementation phase creating the condition for a real enlargement of the network to the sector oriented ETPs active along the different value chains and concomitantly bringing together other relevant actors of the European Materials community, for a real integration of voices and visions. The key objectives include: To contribute to the implementation of the A4M view and strategy To integrate the diversity of ideas in Materials across ETPs To rely on a Value Chain based concept as main driver for a credible integration To speed up industrial exploitation of materials To pull together all the key materials technologies to support the Commission in establishing priorities


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: SPIRE-07-2015 | Award Amount: 6.62M | Year: 2015

Specific raw materials become increasingly important to manufacture high level industrial products. Especially electronic equipment contains precious metals and a series of strategic raw materials. To date the material specific recycling is focused on mass stream concepts such as shredder processes and metallurgy to extract the high-value metallic constituents, i.e. copper, gold, silver. However, a series of critical elements cannot be recovered efficiently or is even lost in dust or residual fractions. The goal of ADIR is to demonstrate the feasibility of a key technology for next generation urban mining. An automated disassembly of electronic equipment will be worked out to separate and recover valuable materials. The concept is based on image processing, robotic handling, pulsed power technology, 3D laser measurement, real-time laser material identification (to detect materials), laser processing (to access components, to selectively unsolder these; to cut off parts of a printed circuit board), and automatic separation into different sorting fractions. A machine concept will be worked out being capable to selectively disassemble printed circuit boards and mobile phones with short cycle times to gain sorting fractions containing high amounts of valuable materials. Examples are those materials with high economic importance and significant supply risk such as tantalum, rare earth elements, germanium, cobalt, palladium, gallium and tungsten. A demonstrator will be developed and evaluated in field tests at a recycling company. The obtained sorting fractions will be studied with respect to their further processing and recovery potential for raw materials. Refining companies will define requirements and test the processing of sorting fractions with specific material enrichments. An advisory board will be established incorporating three telecommunication enterprises.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11a-2014 | Award Amount: 8.56M | Year: 2015

BioMOre describes a New Mining Concept for Extracting Metals from Deep Ore Deposits using Biotechnology. The concept is to use hydrofracturing for stimulation and bioleaching for winning of ores. The final process will consist of a so-called doublet, which is two deviated and parallel wells. In order to avoid high costs for drilling from the surface, the BioMOre approach is divided into two phases. Phase 1 will be research on the intended bioleaching process whereas phase 2 will aim at a pilot installation to demonstrate the applicability of the process in large scale including hydro-fracturing and access of the deposit from surface. The first phase should cover the intended work of the current BioMOre approach without drilling from surface. The BioMOre project aims at extracting metals from deep mineralized zones in Europe (Poland-Germany, Kupferschiefer deposit as a test case) by coupling solution mining and bioleaching. Selected sustainability indicators based on regulatory requirements of the European Commission will be applied for feasibility considerations. The main objective of the BioMOre first phase is to design and build an underground test facility for testing the concept of combined hydro-fracturing and bioleaching. The test facility will comprise a 100 m ore block, where boreholes will be drilled horizontally using standard equipment. All necessary equipment for testing different parameters of the intended bioleaching process will be established underground. The intention is to test the bioleaching process in high detail in an in-situ environment at the same time avoiding time consuming and risky permission procedures. On the other hand, the application for the permission of underground test operation must contain detailed information about monitoring of tests and all material controls. No harmful substances will remain in the mine after the tests are completed. Further to that, predictive numerical modelling of a pilot installation should be done.


Patent
Instytut Metali Niezelaznych | Date: 2013-07-03

The subject of this invention is a method for producing homogeneous rhenium - nickel alloys by electrodeposition from aqueous solutions. In the method according to the invention to a sulphate nickel electrolytic bath for cathodic nickel production rhenium is introduced in the form of rhenate(VII) ions, preferably in the form of ammonium rhenate(VII) added in an amount of 2 to 100 g/dm^(3), and at a temperature of from 10 to 80C, preferably at a temperature close to 55C, the process of rhenium - nickel alloy electrodeposition is conducted on a cathode arranged centrally in the electrolyzer. On both sides of the cathode two insoluble anodes are placed, said cathodes preferably made of titanium and coated with metal oxides, wherein the cathodic current density is set to 5 A/dm^(2), with pH of the bath ranging from 1 to 8, and wherein a laminar flow of the electrolyte is effected at a linear velocity of from 1 to 5 cm/min for a volumetric charge density ranging from 1 to 5 Ah/dm^(3).


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11e-2015 | Award Amount: 7.91M | Year: 2016

METGROW\ will address and solve bottlenecks in the European raw materials supply by developing innovative metallurgical technologies for unlocking the use of potential domestic raw materials. The METGROW\ consortium has received an EIP RM Commitment status. The consortium is supported by internationally respected research institutes and universities. Many of the partners (9) are members of EIT KIC Raw Materials consortium as well. The value chain and business models for metal recovery from low grade ores and wastes are carefully looked after. Within this project, both primary and secondary materials are studied as potential metal resources. Economically important nickel-cobalt deposits and low grade polymetallic wastes, iron containing sludges (goethite, jarosite etc.) which are currently not yet being exploited due to technical bottlenecks, are in focus. Concurrently, METGROW\ targets innovative hydrometallurgical processes to extract important metals including Ni, Cu, Zn, Co, In, Ga, Ge from low grade ores in a cost-effective way. In addition a toolbox for metallurgical system is created in the project using new methods and combinations. The unused potential of metal containing fine grained industrial residues are evaluated, while hybrid and flexible hydrometallurgical processes and treatment methods of fines are developed for both materials. Training and education of new professionals are facilitated within the METGROW\ project. The knowledge of raw materials and sustainable technologies will attract new talents in the field who can flexibly change fields from treatment of secondary to primary resources, which also smoothens the economic ups and downs in the primary sector.

Loading Instytut Metali Niezelaznych collaborators
Loading Instytut Metali Niezelaznych collaborators