Entity

Time filter

Source Type


Murcia A.B.,Instituto Universitario Of Materiales | Geng J.,University of Bolton
Journal of Nanoscience and Nanotechnology | Year: 2013

We report a study of synthesising air-stable, nearly monodispersed bimetallic colloids of Co/Pd and Fe/Mo of varying compositions as active catalysts for the growth of carbon nanotubes. Using these catalysts we have investigated the effects of catalyst and substrate on the carbon nanostructures formed in a plasma-enhanced chemical vapour deposition (PECVD) process. We will show how it is possible to assess the influence of both the catalyst and the support on the controlled growth of carbon nanotube and nanofiber arrays. The importance of the composition of the catalytic nuclei will be put into perspective with other results from the literature. Furthermore, the influence of other synthetic parameters such as the nature of the nanoparticle catalysts will also be analysed and discussed in detail. Copyright © 2013 American Scientific Publishers All rights reserved. Source


Barbosa O.,Industrial University of Santander | Torres R.,Industrial University of Santander | Ortiz C.,Industrial University of Santander | Berenguer-Murcia A.,Instituto Universitario Of Materiales | And 2 more authors.
Biomacromolecules | Year: 2013

A heterofunctional support for enzyme immobilization may be defined as that which possesses several distinct functionalities on its surface able to interact with a protein. We will focus on those supports in which a final covalent attachment between the enzyme and the support is achieved. Heterofunctionality sometimes has been featured in very old immobilization techniques, even though in many instances it has been overlooked, giving rise to some misunderstandings. In this respect, glutaraldehyde-activated supports are the oldest multifunctional supports. Their matrix has primary amino groups, the hydrophobic glutaraldehyde chain, and can covalently react with the primary amino groups of the enzyme. Thus, immobilization may start (first event of the immobilization) via different causes and may involve different positions of the enzyme surface depending on the activation degree and immobilization conditions. Other "classical" heterofunctional supports are epoxy commercial supports consisting of reactive covalent epoxy groups on a hydrophobic matrix. Immobilization is performed at high ionic strength to permit protein adsorption, so that covalent attachment may take place at a later stage. Starting from these old immobilization techniques, tailor-made heterofunctional supports have been designed to permit a stricter control of the enzyme immobilization process. The requirement is to find conditions where the main covalent reactive moieties may have very low reactivity toward the enzyme. In this Review we will discuss the suitable properties of the groups able to give the covalent attachment (intending a multipoint covalent attachment), and the groups able to produce the first enzyme adsorption on the support. Prospects, limitations, and likely pathways for the evolution (e.g., coupling of site-directed mutagenesis and thiol heterofunctional supports of enzyme immobilization on heterofunctional supports) will be discussed in this Review. © 2013 American Chemical Society. Source


Balsamo M.,University of Naples Federico II | Rodriguez-Reinoso F.,Instituto Universitario Of Materiales | Montagnaro F.,University of Naples Federico II | Lancia A.,University of Naples Federico II | Erto A.,University of Naples Federico II
Industrial and Engineering Chemistry Research | Year: 2013

CO2 adsorption onto two particle size classes of the commercial activated carbon Filtrasorb 400, namely 600-900 μm (sample F600-900) and 900-1200 μm (sample F900-1200), was investigated at 293 K under model flue gas conditions in a fixed-bed column. Equilibrium adsorption capacity for a typical 15% CO2 postcombustion effluent was 0.7 mol kg-1 for both investigated adsorbents. In both cases, CO2 breakthrough curves showed a reduction of the characteristic breakpoint time and faster capture kinetics at higher pollutant concentration in the feed (in the range 1-15%). Dynamic adsorption data highlighted the important role played by wider micropores in determining a quicker adsorption process for finer particles. Mathematical modeling of the 15% CO2 breakthrough curve allowed identifying intraparticle diffusion as the limiting step of the adsorption process. Numerical analysis provided values of the intraparticle mass-transfer resistances equal to 1.7 and 3.3 s for F600-900 and F900-1200, respectively. © 2013 American Chemical Society. Source


Rodrigues R.C.,Federal University of Rio Grande do Sul | Barbosa O.,Industrial University of Santander | Ortiz C.,Industrial University of Santander | Berenguer-Murcia A.,Instituto Universitario Of Materiales | And 2 more authors.
RSC Advances | Year: 2014

Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its "in vivo" behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future. © the Partner Organisations 2014. Source


Casco M.E.,Instituto Universitario Of Materiales | Morelos-Gomez A.,Shinshu University | Vega-Diaz S.M.,Shinshu University | Cruz-Silva R.,Shinshu University | And 9 more authors.
Journal of CO2 Utilization | Year: 2014

CO2 adsorption has been measured in different types of graphitic nanostructures (MWCNTs, acid treated MWCNTs, graphene nanoribbons and pure graphene) in order to evaluate the effect of the different defective regions/conformations in the adsorption process, i.e., sp3 hybridized carbon, curved regions, edge defects, etc. This analysis has been performed both in pure carbon and nitrogen-doped nanostructures in order to monitor the effect of surface functional groups on surface created after using different treatments (i.e., acid treatment and thermal expansion of the MWCNTs), and study their adsorption properties. Interestingly, the presence of exposed defective regions in the acid treated nanostructures (e.g., uncapped nanotubes) gives rise to an improvement in the amount of CO2 adsorbed; the adsorption process being completely reversible. For N-doped nanostructures, the adsorption capacity is further enhanced when compared to the pure carbon nanotubes after the tubes were unzipped. The larger proportion of defect sites and curved regions together with the presence of stronger adsorbent-adsorbate interactions, through the nitrogen surface groups, explains their larger adsorption capacity. © 2014 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations