Time filter

Source Type

Marslin G.,University of Minho | Selvakesavan R.K.,University of Minho | Franklin G.,University of Minho | Sarmento B.,University of Porto | And 2 more authors.
International Journal of Nanomedicine | Year: 2015

We report on the antimicrobial activity of a cream formulation of silver nanoparticles (AgNPs), biosynthesized using Withania somnifera extract. Aqueous extracts of leaves promoted efficient green synthesis of AgNPs compared to fruits and root extracts of W. somnifera. Biosynthesized AgNPs were characterized for their size and shape by physical-chemical techniques such as UV-visible spectroscopy, laser Doppler anemometry, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, and X-ray energy dispersive spectroscopy. After confirming the antimicrobial potential of AgNPs, they were incorporated into a cream. Cream formulations of AgNPs and AgNO3 were prepared and compared for their antimicrobial activity against human pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). Our results show that AgNP creams possess significantly higher antimicrobial activity against the tested organisms. © 2015 Marslin et al. Source

Chaves L.L.,University of Porto | Vieira A.C.C.,University of Porto | Ferreira D.,University of Porto | Sarmento B.,University of Porto | And 2 more authors.
International Journal of Biological Macromolecules | Year: 2015

This work aimed to design dapsone (DAP) amorphous Polymeric Dispersions (PD) using design of experiments (DoE) and response surface methodology (RSM) as optimization tools in order to tailor the biopharmaceutical properties toward its oral delivery. A two-factor, three-level (32) statistical design was implemented to study the influence of input variables (amount of PVP K30 and Pluronic F68) on the equilibrium solubility of DAP of the physical mixture (PM), kneaded (KN) and freeze dried (FD) PDs. Through the analysis, it was found that equilibrium solubility of DAP was improved with increasing of PVP K30, mainly for FD PDs, but decreased with increasing Pluronic F68 concentration. XRD and FTIR spectrum revealed the amorphous characteristic of FD PDs and SEM confirmed the homogeneity of the system leading to enhanced surface area and consequent dissolution rate. The in vitro dissolution rate of PDs was significantly faster compared to DAP and PM, and all the similarity factors (f2) were below 50, demonstrating the differences on the dissolution profiles. The results established the effectiveness of PDs for improvement of dissolution and solubility of DAP and the success in the implementation of DoE and RSM as QbD tools in the design of PDs. © 2015 Elsevier B.V. Source

Gonzalez-Delgado J.A.,Inovapotek Pharmaceutical Research and Development | Gonzalez-Delgado J.A.,University of Aveiro | Kennedy P.J.,University of Porto | Ferreira M.,Inovapotek Pharmaceutical Research and Development | And 5 more authors.
Journal of Medicinal Chemistry | Year: 2016

Semisolid formulations, such as gels, creams and ointments, have recently contributed to the progression of photodynamic therapy (PDT) and microbial photodynamic inactivation (PDI) in clinical applications. The most important challenges facing this field are the physicochemical properties of photosensitizers (PSs), optimal drug release profiles, and the photosensitivity of surrounding tissues. By further integration of nanotechnology with semisolid formulations, very promising pharmaceuticals have been generated against several dermatological diseases (PDT) and (antibiotic-resistant) pathogenic microorganisms (PDI). This review focuses on the different PSs and their associated semisolid formulations currently found in both the market and clinical trials that are used in PDT/PDI. Special emphasis is placed on the advantages that the semisolid formulations bring to drug delivery in PDI. Lastly, some potential considerations for improvement in this field are also discussed. © 2015 American Chemical Society. Source

Martins J.P.,University of Porto | Kennedy P.J.,University of Porto | Santos H.A.,Aalto University | Barrias C.,University of Porto | And 2 more authors.
Pharmacology and Therapeutics | Year: 2016

Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification. © 2016 Elsevier Inc. All rights reserved. Source

Nascimento A.V.,Instituto Universitario Of Ciencias Da Saude | Nascimento A.V.,University of Porto | Nascimento A.V.,Northeastern University | Singh A.,Northeastern University | And 6 more authors.
Molecular Pharmaceutics | Year: 2015

Development of efficient and versatile drug delivery platforms to overcome the physical and biological challenges in cancer therapeutics is an area of great interest, and novel materials are actively sought for such applications. Recent strides in polymer science have led to a combinatorial approach for generating a library of materials with different functional identities that can be "mixed and matched" to attain desired characteristics of a delivery vector. We have applied the combinatorial design to chitosan (CS), where the polymer backbone has been modified with polyethylene glycol, epidermal growth factor receptor-binding peptide, and lipid derivatives of varying chain length to encapsulate hydrophobic drugs. Cisplatin, cis-([PtCl2(NH3)2]), is one of the most potent chemotherapy drugs broadly administered for cancer treatment. Cisplatin is a hydrophilic drug, and in order for it to be encapsulated in the developed nanosystems, it was modified with lipids of varying chain length. The library of four CS derivatives and six platinum derivatives was self-assembled in aqueous medium and evaluated for physicochemical characteristics and cytotoxic effects in platinum-sensitive and -resistant lung cancer cells. The results show that the lipid-modified platinate encapsulation into CS nanoparticles significantly improved cellular cytotoxicity of the drug. In this work, we have also reinforced the idea that CS is a multifaceted system that can be as successful in delivering small molecules as it has been as a nucleic acids carrier. © 2015 American Chemical Society. Source

Discover hidden collaborations