Time filter

Source Type

Belo Horizonte, Brazil

da Graca G.C.,Instituto Oswaldo Cruz | Volpini A.C.,Instituto Oswaldo Cruz | Volpini A.C.,Instituto Rene Rachou Fiocruz | Romero G.A.S.,University of Brasilia | And 5 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2012

In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

Martins G.F.,Federal University of Vicosa | Serrao J.E.,Federal University of Vicosa | Ramalho-Ortigao J.M.,Kansas State University | Pimenta P.F.P.,Instituto Rene Rachou Fiocruz
Memorias do Instituto Oswaldo Cruz | Year: 2011

The insect fat body plays major roles in the intermediary metabolism, in the storage and transport of haemolymph compounds and in the innate immunity. Here, the overall structure of the fat body of five species of mosquitoes (Aedes albopictus, Aedes fluviatilis, Culex quinquefasciatus, Anopheles aquasalis and Anopheles darlingi) was compared through light, scanning and transmission electron microscopy. Generally for mosquitoes, the fat body consists of lobes projecting into the haemocoel and is formed by great cell masses consisting of trophocytes and oenocytes. Trophocytes are rich in lipid droplets and protein granules. Interestingly, brown pigment granules, likely ommochromes, were found exclusively in the trophocytes located within the thorax and near the dorsal integument of Anopheles, which is suggestive of the role these cells play in detoxification via ommochrome storage. This study provides a detailed comparative analysis of the fat body in five different mosquito species and represents a significant contribution towards the understanding of the structural-functional relationships associated with this organ.

Valderrama A.,Federal University of Vicosa | Valderrama A.,Instituto Conmemorativo Gorgas Of Estudios Of La Salud | Tavares M.G.,Federal University of Vicosa | Filho J.D.A.,Instituto Rene Rachou Fiocruz
Memorias do Instituto Oswaldo Cruz | Year: 2011

In Panama, species of the genus Lutzomyia are vectors of American cutaneous leishmaniasis (ACL). There is no recent ecological information that may be used to develop tools for the control of this disease. Thus, the goal of this study was to determine the composition, distribution and diversity of Lutzomyia species that serve as vectors of ACL. Sandfly sampling was conducted in forests, fragmented forests and rural environments, in locations with records of ACL. Lutzomyia gomezi, Lutzomyia panamensis and Lutzomyia trapidoi were the most widely distributed and prevalent species. Analysis of each sampling point showed that the species abundance and diversity were greatest at points located in the fragmented forest landscape. However, when the samples were grouped according to the landscape characteristics of the locations, there was a greater diversity of species in the rural environment locations. The Kruskal Wallis analysis of species abundance found that Lu. gomezi and Lu. trapidoi were associated with fragmented environments, while Lu. panamensis, Lutzomyia olmeca bicolor and Lutzomyia ylephiletor were associated with forested environments. Therefore, we suggest that human activity influences the distribution, composition and diversity of the vector species responsible for leishmaniasis in Panama.

Periago M.V.,Instituto Rene Rachou Fiocruz | Bethony J.M.,George Washington University
Microbes and Infection | Year: 2012

Hookworm disease from Necator americanus and Ancylostoma duodenale affects approximately 700 million people, with N. americanus being the predominant species. Unlike other pathogens (e.g., bacterial infections), where " virulence" is described in regards to acute pathogenesis and case-fatality, hookworms are well-evolved, multicellular parasites that establish long-term infections in their human hosts with a subtle and chronic, but insidious, pathogenesis, usually in the form of iron deficiency anemia from parasite blood feeding that, over time, has devastating effects on the human host especially when it involves children or women of child bearing years. As such, many of the typical terms for " virulence factors" used in other reviews in this special edition cannot be applied to hookworm (e.g., " colonization", " invasion", " or " toxicity"); rather the virulence of hookworm infection comes in terms of their ability to maintain a chronic blood-feeding infection in the lumen of relatively healthy human hosts, an infection that is usually measured in years but can sometimes be measured in decades. In the current manuscript, we describe the routes of invasion hookworms take into their human hosts and the means by which they modulate the human immune system to maintain this long-term parasitism. Little data on hookworm infection comes from actual human infections; instead, much of the data is derived from observations of laboratory animal models, in which hookworms fail to establish this distinctive " chronic infection," either due to physiological or immunological responses of these animal models. Hence, the mode and effects of chronic immunity must be extrapolated from this very different sort of infection to humans. Herein, we aim to synthesize immunological information from both types of models in the context of immune regulation and protection in order to identify future research focuses for the development of new treatment alternatives (i.e. drugs and vaccines). © 2012 Institut Pasteur.

Martins G.F.,Federal University of Vicosa | Ramalho-Ortigao J.M.,Kansas State University | Lobo N.F.,University of Notre Dame | Severson D.W.,University of Notre Dame | And 2 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2011

Oenocytes are ectodermic cells present in the fat body of several insect species and these cells are considered to be analogous to the mammalian liver, based on their role in lipid storage, metabolism and secretion. Although oenocytes were identified over a century ago, little is known about their messenger RNA expression profiles. In this study, we investigated the transcriptome of Aedes aegypti oenocytes. We constructed a cDNA library from Ae. aegypti MOYO-R strain oenocytes collected from pupae and randomly sequenced 687 clones. After sequences editing and assembly, 326 high-quality contigs were generated. The most abundant transcripts identified corresponded to the cytochrome P450 superfamily, whose members have roles primarily related to detoxification and lipid metabolism. In addition, we identified 18 other transcripts with putative functions associated with lipid metabolism. One such transcript, a fatty acid synthase, is highly represented in the cDNA library of oenocytes. Moreover, oenocytes expressed several immunity-related genes and the majority of these genes were lysozymes. The transcriptional profile suggests that oenocytes play diverse roles, such as detoxification and lipid metabolism, and increase our understanding of the importance of oenocytes in Ae. aegypti homeostasis and immune competence.

Discover hidden collaborations