Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis

Madrid, Spain

Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis

Madrid, Spain
SEARCH FILTERS
Time filter
Source Type

Perianes-Cachero A.,University of Alcalá | Burgos-Ramos E.,Stem Cells and Cancer Group | Puebla-Jimenez L.,University of Alcalá | Canelles S.,Hospital Infantil Universitario Nino Jesus | And 19 more authors.
Neuroscience | Year: 2013

Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5. μg of leptin and sacrificed 1 or 6. h later. Density of SRIF receptors was unchanged at 1. h, whereas leptin increased the density of SRIF receptors at 6. h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain. © 2013 IBRO.


Reales-Calderon J.A.,Complutense University of Madrid | Reales-Calderon J.A.,Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis | Sylvester M.,University of Southern Denmark | Strijbis K.,Whitehead Institute For Biomedical Research | And 7 more authors.
Journal of Proteomics | Year: 2013

Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed RAW 264.7 macrophages to C. albicans for 3. h and used SILAC to quantify macrophage proteins and phosphoproteins by mass spectrometry to study the effects of infection. We identified 53 macrophage up-regulated proteins and 15 less abundant in the presence of C. albicans out of a total of 2071 identified proteins. 922 unique protein phosphorylation sites were identified by phosphopeptide enrichment and mass spectrometry, including 327 previously unidentified mouse protein phosphorylation sites. 126 peptides showed an increase and 70 a decrease in their phosphorylation level. The majority of the differentially expressed and phosphorylated proteins are receptors, mitochondrial ribosomal proteins, cytoskeletal proteins, and transcription factor activators involved in inflammatory and oxidative responses. In addition, we identified 22 proteins and phosphoproteins related to apoptosis. The analysis of apoptotic markers revealed that anti-apoptotic signals prevailed during the interaction of the yeast. Our proteomics study suggests that besides inflammation, apoptosis is a central pathway in the immune defense against C. albicans infection. Biological significance: This work uses SILAC and SIMAC methodology combined with CPP (+ TiO2) to study protein and phosphopeptide changes in RAW 264.7 macrophages in response to coincubation with Candida albicans for 3h. We show that the presence of C. albicans induces inflammatory responses and inhibits apoptosis in the macrophages. Our phosphoproteomic analysis identified 327 new mouse protein phosphorylation sites. © 2013 Elsevier B.V.


Erdozain A.M.,University of the Basque Country | Erdozain A.M.,Research Center Biomedica En Red Of Salud Mental Cibersam | Erdozain A.M.,University Pierre and Marie Curie | Rubio M.,Complutense University of Madrid | And 15 more authors.
Addiction Biology | Year: 2015

There is strong biochemical, pharmacological and genetic evidence for the involvement of the endocannabinoid system (ECS) in alcohol dependence. However, the majority of studies have been performed in animal models. The aim of the present study was to assess the state of the CB1 receptor, the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the extracellular signal-regulated kinase (ERK) and cyclic-AMP response element-binding protein (CREB) in the post-mortem prefrontal cortex of alcoholic subjects. Experiments were performed in samples from 44 subjects classified in four experimental groups: (1) non-suicidal alcoholic subjects (n=11); (2) suicidal alcoholic subjects (n=11); (3) non-alcoholic suicide victims (n=11); and (4) control subjects (n=11). We did not observe statistically significant differences in CB1 mRNA relative expression among the four experimental groups. Conversely, our results showed an increase in CB1 receptor protein expression in the prefrontal cortex of the suicidal alcoholic group (127.2±7.3%), with no changes in functionality with regard to either G protein activation or the inhibition of adenylyl cyclase. In parallel, alcoholic subjects presented lower levels of MAGL activity, regardless of the cause of death. A significant decrease in the active form of ERK and CREB levels was also observed in both alcoholic groups. Taken together, our data are consistent with a role for the ECS in the neurobiological mechanisms underlying alcoholism. Moreover, the alterations reported here should be of great interest for the therapeutic treatment of this chronic psychiatric disease. © 2014 Society for the Study of Addiction.


Reales-Calderon J.A.,Complutense University of Madrid | Reales-Calderon J.A.,Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis | Aguilera-Montilla N.,CSIC - Biological Research Center | Corbi A.L.,CSIC - Biological Research Center | And 4 more authors.
Proteomics | Year: 2014

In response to different stimuli, macrophages can differentiate into either a pro-inflammatory subtype (M1, classically activated macrophages) or acquire an anti-inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human-polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1- and M2-polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose-1,6-bisphosphatase 1, a critical enzyme in gluconeogenesis, up-regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1-to-M2 switch in polarization was observed. This M1-to-M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Moles L.,Complutense University of Madrid | Moles L.,Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis | Gomez M.,Complutense University of Madrid | Jimenez E.,Complutense University of Madrid | And 15 more authors.
Clinical Microbiology and Infection | Year: 2015

Preterm infants in a neonatal intensive care unit (NICU) are exposed to multidrug-resistant bacteria previously adapted to the hospital environment. The aim of the present study was to characterize the bacterial antibiotic-resistant high-risk lineages colonizing preterm infants during their NICU stay and their persistence in faeces after 2 years. A total of 26 preterm neonates were recruited between October 2009 and June 2010 and provided 144 faecal samples. Milk samples (86 mother's milk, 35 human donor milk and 15 formula milk) were collected at the same time as faecal samples. An additional faecal sample was recovered in 16 infants at the age of 2 years. Samples were plated onto different selective media, and one colony per morphology was selected. Isolates were identified by 16S rDNA nucleotide sequence and MALDI-TOF. Antibiotic susceptibility (agar dilution), genetic diversity (RAPD, PFGE and MLST) and virulence factors (only in enterococcal and staphylococcal isolates) were determined by PCR. A high proportion of antibiotic-resistant high-risk clones was detected in both faecal and milk samples during the NICU admittance. Almost all infants were colonized by Enterococcus faecalis ST64 and Enterococcus faecium ST18 clones, while a wider genetic diversity was observed for the Gram-negative isolates. Multidrug-resistant high-risk clones were not recovered from the faecal samples of the 2-year-olds. In conclusion, the gut of preterm infants admitted to the NICU might be initially colonized by antibiotic-resistant and virulent high-risk lineages, which are later replaced by antibiotic-susceptible community ones. © 2015 European Society of Clinical Microbiology and Infectious Diseases.


Morales P.,Institute Quimica Medica | Whyte L.S.,King's College | Chicharro R.,Institute Quimica Medica | Gomez-Canas M.,Complutense University of Madrid | And 12 more authors.
Journal of Medicinal Chemistry | Year: 2016

The orphan G protein-coupled receptor GPR55 has been proposed as a novel receptor of the endocannabinoid system. However, the validity of this categorization is still under debate mainly because of the lack of potent and selective agonists and antagonists of GPR55. Binding assays are not yet available for GPR55 screening, and discrepancies in GPR55 mediated signaling pathways have been reported. In this context, we have designed and synthesized novel GPR55 ligands based on a chromenopyrazole scaffold. Appraisal of GPR55 activity was accomplished using a label-free cell-impedance-based assay in hGPR55-HEK293 cells. The real-time impedance responses provided an integrative assessment of the cellular consequence to GPR55 stimulation taking into account the different possible signaling pathways. Potent GPR55 partial agonists (14b, 18b, 19b, 20b, and 21-24) have been identified; one of them (14b) being selective versus classical cannabinoid receptors. Upon antagonist treatment, chromenopyrazoles 21-24 inhibited lysophosphatidylinositol (LPI) effect. One of these GPR55 antagonists (21) is fully selective versus classic cannabinoid receptors. Compared to LPI, the predicted physicochemical parameters of the new compounds suggest a clear pharmacokinetic improvement. © 2016 American Chemical Society.


Moles L.,Complutense University of Madrid | Gomez M.,Complutense University of Madrid | Jimenez E.,Complutense University of Madrid | Fernandez L.,Complutense University of Madrid | And 5 more authors.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases | Year: 2015

Preterm infants in a neonatal intensive care unit (NICU) are exposed to multidrug-resistant bacteria previously adapted to the hospital environment. The aim of the present study was to characterize the bacterial antibiotic-resistant high-risk lineages colonizing preterm infants during their NICU stay and their persistence in faeces after 2 years. A total of 26 preterm neonates were recruited between October 2009 and June 2010 and provided 144 faecal samples. Milk samples (86 mother's milk, 35 human donor milk and 15 formula milk) were collected at the same time as faecal samples. An additional faecal sample was recovered in 16 infants at the age of 2 years. Samples were plated onto different selective media, and one colony per morphology was selected. Isolates were identified by 16S rDNA nucleotide sequence and MALDI-TOF. Antibiotic susceptibility (agar dilution), genetic diversity (RAPD, PFGE and MLST) and virulence factors (only in enterococcal and staphylococcal isolates) were determined by PCR. A high proportion of antibiotic-resistant high-risk clones was detected in both faecal and milk samples during the NICU admittance. Almost all infants were colonized by Enterococcus faecalis ST64 and Enterococcus faecium ST18 clones, while a wider genetic diversity was observed for the Gram-negative isolates. Multidrug-resistant high-risk clones were not recovered from the faecal samples of the 2-year-olds. In conclusion, the gut of preterm infants admitted to the NICU might be initially colonized by antibiotic-resistant and virulent high-risk lineages, which are later replaced by antibiotic-susceptible community ones. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


Fernandez-Acero T.,Complutense University of Madrid | Fernandez-Acero T.,Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis | Rodriguez-Escudero I.,Complutense University of Madrid | Molina M.,Complutense University of Madrid | Cid V.J.,Complutense University of Madrid
Cellular Signalling | Year: 2015

Phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is essential for recognition of the plasma membrane inner leaf by protein complexes. We expressed mammalian class I phosphoinositide 3-kinase (PI3K) in Saccharomyces cerevisiae to eliminate PtdIns(4,5)P2 by its conversion into PtdIns(3,4,5)P3, a lipid naturally missing in this yeast. This led to loss of actin function and endocytosis defects, causing a blockage in polarized secretion. Also, the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway was activated, triggering a typical transcriptional response. In the absence of PtdIns(4,5)P2 at the plasma membrane, the Pkc1 protein kinase upstream the CWI MAPK module localized to post-Golgi endosomes marked by SNARE Snc1 and Rab GTPases Ypt31 and Ypt32. Other components at the head of the pathway, like the mechanosensor Wsc1, the GTPase Rho1 and its activator the GDP/GTP exchange factor Rom2, co-localized with Pkc1 in these compartments. Chemical inhibition of PI3K proved that both CWI activation and Pkc1 relocation to endosomes are reversible. These results suggest that the CWI pathway is able to respond to loss of plasma membrane identity from recycling endosomes. © 2015 Elsevier Inc.


Salazar M.,Complutense University of Madrid | Lorente M.,Complutense University of Madrid | Lorente M.,Institute Investigaciones Sanitarias San Carlos IdISSC | Garcia-Taboada E.,Complutense University of Madrid | And 11 more authors.
Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids | Year: 2013

Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer. This effect relies, at least in part, on the up-regulation of several endoplasmic reticulum stress-related proteins including the pseudokinase tribbles homologue-3 (TRIB3), which leads in turn to the inhibition of the AKT/mTORC1 axis and the subsequent stimulation of autophagy-mediated apoptosis in tumor cells. Here, we took advantage of the use of cells derived from Trib3-deficient mice to investigate the precise mechanisms by which TRIB3 regulates the anti-cancer action of THC. Our data show that RasV 12/E1A-transformed embryonic fibroblasts derived from Trib3-deficient mice are resistant to THC-induced cell death. We also show that genetic inactivation of this protein abolishes the ability of THC to inhibit the phosphorylation of AKT and several of its downstream targets, including those involved in the regulation of the AKT/mammalian target of rapamycin complex 1 (mTORC1) axis. Our data support the idea that THC-induced TRIB3 up-regulation inhibits AKT phosphorylation by regulating the accessibility of AKT to its upstream activatory kinase (the mammalian target of rapamycin complex 2; mTORC2). Finally, we found that tumors generated by inoculation of Trib3-deficient cells in nude mice are resistant to THC anticancer action. Altogether, the observations presented here strongly support that TRIB3 plays a crucial role on THC antineoplastic activity. This article is part of a Special Issue entitled Lipid Metabolism in Cancer. © 2013 Elsevier B.V. All rights reserved.


Salazar M.,Complutense University of Madrid | Salazar M.,Institute Investigaciones Sanitarias San Carlos IdISSC | Salazar M.,Cell Division and Cancer Group | Lorente M.,Complutense University of Madrid | And 31 more authors.
Cell Death and Differentiation | Year: 2015

Tribbles pseudokinase-3 (TRIB3) has been proposed to act as an inhibitor of AKT although the precise molecular basis of this activity and whether the loss of TRIB3 contributes to cancer initiation and progression remain to be clarified. In this study, by using a wide array of in vitro and in vivo approaches, including a Trib3 knockout mouse, we demonstrate that TRIB3 has a tumor-suppressing role. We also find that the mechanism by which TRIB3 loss enhances tumorigenesis relies on the dysregulation of the phosphorylation of AKT by the mTORC2 complex, which leads to an enhanced phosphorylation of AKT on Ser473 and the subsequent hyperphosphorylation and inactivation of the transcription factor FOXO3. These observations support the notion that loss of TRIB3 is associated with a more aggressive phenotype in various types of tumors by enhancing the activity of the mTORC2/AKT/FOXO axis. © 2015 Macmillan Publishers Limited All rights reserved.

Loading Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis collaborators
Loading Instituto Ramon Y Cajal Of Investigaciones Sanitarias Irycis collaborators