Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SPA.2013.1.1-06;SPA.2013.3.1-01 | Award Amount: 2.51M | Year: 2013

The objective of SAFI project is to exploit Earth Observation resources to support fishery and aquaculture industries in marine coastal regions. The service, based on additive value brought by a network of SMEs, is adapted to each category of targeted users, and aims to realize the following points by making the best use of emerging EO products: 1-Develop a service to assist aquaculture deployment (optimization of cages location w.r.t. to environmental and ecological context) and environmental monitoring during operations 2- Develop a service to support fishery by providing indicators of recruitments, abundances, and shell/fish locations (and its variability due to climate change) 3-Set up a network of SMEs at different levels of expertise (and EO awareness) required by the service and to build a consistent and marketable offer. 4-Evaluate the capacity of exportation and acceptance of this service 5-Foster the use of sentinel 2 and sentinel 3 data The project will finally lead to the development, deployment and evaluation of an integrated web-GIS, broadcasting SAFI indicators to the various user concerned (industrials, public administrations in charge of fishery/aquaculture planning, EO service providers, great public) that will be feed by a service of EO high level data processing. SAFI stands for Service to Aquaculture and Fishery Industry.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: EO-2-2014 | Award Amount: 5.50M | Year: 2015

FIDUCEO will create new climate datasets from Earth Observations with rigorous treatment of uncertainty informed by the discipline of metrology. This responds to the need for enhanced credibility for climate data, to support rigorous science, decision-making and climate services. Our approach is (1) to develop methodologies for generating Fundamental Climate Data Records (FCDRs) and [Thematic] Climate Data Records (CDRs) that are widely applicable and metrologically rigorous and (2) to build new FCDRs and CDRs, making them easily accessible, with complete and traceable estimates of stability and uncertainty. New tools for metrologically rigorous analysis will be created, including tools for stability analysis and ensemble creation. The chosen FCDRs have a length relevant to climate (>20 years) and can support numerous CDRs. Selected CDRs will be generated that illustrate new capabilities (e.g. equi-probable ensembles) as well as the benefits from use of the new FCDRs, such as improved stability and traceable uncertainties. Specifically, we will create: harmonised radiances (FCDRs) for the following sensors: AVHRR, HIRS, AMSU-B/MHS and MVIRI; and geophysical datasets, with uncertainties, for: ensemble sea and lake surface temperature, tropospheric humidity, aerosol optical depth and surface albedo. All data, software tools and methods will be freely and openly accessible and will be disseminated in a variety of forms including e-learning modules. All data will be available in both a common easy format (for general users) and community-standard formats. FIDUCEO will liaise explicitly with relevant programmes (Copernicus Climate Change Service, NOAA Climate Data Records programme, SCOPE-CM, re-analysis initiatives etc), and hold with two workshops for dialogue with the user community. By both creating valuable datasets and defining and applying rigorous new metrological methods, FIDUCEO aims for a broad and lasting impact in the field of climate data from space.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2012.6.1-1 | Award Amount: 13.24M | Year: 2012

Recent advances in our understanding and forecasting of climate and climate change have brought us to the point where skilful and useful predictions are being made. These forecasts hold the potential for being of great value for a wide range of decision-makers who are affected by the vagaries of the climate and who would benefit from understanding and better managing climate-related risks. However, such climate information is currently under-used, mis-used, or not used at all. Therefore there exists the opportunity to develop new technologies to properly exploit emerging capability from the climate community, and more importantly, to engage with the users of such technologies to develop useful and useable tools. The EUPORIAS project will develop and deliver reliable predictions of the impacts of future climatic conditions on a number of key sectors (to include water, energy, health, transport, agriculture and tourism), on timescales from seasons to years ahead. The project will do this through a strong engagement with the forecast providers and the users/decision-makers, who are both represented within the project. EUPORIAS will develop climate services and tools targeted to the needs of the users, and will share knowledge to promote the technologies created within the project. EUPORIAS will also improve the users understanding of their vulnerability to varying climatic conditions as well as better prepare them to utilise climate forecasts, thereby reducing risks and costs associated with responding to varying climatic conditions. As a result businesses, governments, NGOs, and society in general will be able to better manage risks and opportunities associated with varying climatic conditions, thus becoming more resilient to the variability of the climate. The project will provide the basis for developing a strong climate service market within Europe, offering the opportunity for businesses to capitalise on improved management of weather and climate risks.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2013.6.4-3 | Award Amount: 7.88M | Year: 2013

The NEAM (North East Atlantic, Mediterranean and Adjacent Seas) region of IOC/UNESCO is known to be exposed to tsunamis and, like other regions of the world, faces increasing levels of risk due to i) continuous development of coastal areas with critical infrastructure, and ii) year-round presence of millions of tourists. In recent years, European researchers have greatly advanced knowledge of tsunami hazards and implementation of operational infrastructure, such as creation of a regional system of candidate tsunami-watch providers (CTWP) and national tsunami warning centers (NTWC). However, significant gaps remain and more effort is needed. ASTARTE (Assessment STrategy And Risk for Tsunami in Europe) aims to develop a comprehensive strategy to mitigate tsunami impact in this region. To achieve this goal, an interdisciplinary consortium has been assembled. It includes all CTWPs of NEAM and expert institutions across Europe and worldwide. ASTARTE will improve i) basic knowledge of tsunami generation and recurrence going beyond simple catalogues, with novel empirical data and new statistical analyses for assessing long-term recurrence and hazards of large events in sensitive areas of NEAM, ii) numerical techniques for tsunami simulation, with focus on real-time codes and novel statistical emulation approaches, and iii) methods for assessment of hazard, vulnerability, and risk. ASTARTE will also provide i) guidelines for tsunami Eurocodes,ii) better tools for forecast and warning for CTWPs and NTWCs, and iii) guidelines for decision makers to increase sustainability and resilience of coastal communities. In summary, ASTARTE will develop basic scientific and technical elements allowing for a significant enhancement of the Tsunami Warning System in the NEAM region in terms of monitoring, early warning and forecast, governance and resilience. Overall, this will lead to the goal of the European/NEAM Horizon 2020 strategy: to foster tsunami resilient communities.

Agency: Cordis | Branch: H2020 | Program: CSA | Phase: SPACE | Award Amount: 5.00M | Year: 2014

MACC-III is the last of the pre-operational stages in the development of the Copernicus Atmosphere Service. Its overall institutional objective is to function as the bridge between the developmental precursor projects - GEMS, PROMOTE, MACC and MACC-II- and the Atmosphere Service envisaged to form part of Copernicus Operations. MACC-III will provide continuity of the atmospheric services provided by MACC-II. Its continued provision of coherent atmospheric data and information, either directly or via value-adding downstream services, is for the benefit of European citizens and helps meet global needs as a key European contribution to the Global Climate Observing System (GCOS) and the encompassing Global Earth Observation System of Systems (GEOSS). Its services cover in particular: air quality, climate forcing, stratospheric ozone, UV radiation and solar-energy resources. MACC-IIIs services are freely and openly available to users throughout Europe and in the world. MACC-III and its downstream service sector will enable European citizens at home and abroad to benefit from improved warning, advisory and general information services and from improved formulation and implementation of regulatory policy. MACC-III, together with its scientific-user sector, also helps to improve the provision of science-based information for policy-makers and for decision-making at all levels. The most significant economic benefit by far identified in the ESA-sponsored Socio-Economic Benefits Analysis of Copernicus report published in July 2006 was the long-term benefit from international policy on climate change. Long-term benefit from air quality information ranked second among all Copernicus benefits in terms of present value. Immediate benefits can be achieved through efficiency gains in relation to current policies. The estimated benefits substantially outweigh the costs of developing and operating the proposed services.

Discover hidden collaborations