Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis

Junín de los Andes, Argentina

Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis

Junín de los Andes, Argentina
SEARCH FILTERS
Time filter
Source Type

Perczel A.,Eötvös Loránd University | Atanasov A.G.,University of Vienna | Atanasov A.G.,Polish Academy of Sciences | Sklenar V.,Masaryk University | And 37 more authors.
Molecules (Basel, Switzerland) | Year: 2016

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Perczel A.,Eötvös Loránd University | Atanasov A.G.,University of Vienna | Atanasov A.G.,Polish Academy of Sciences | Sklenar V.,Masaryk University | And 37 more authors.
Molecules | Year: 2016

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on 28 August-1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting. © 2016 by the authors; licensee MDPI, Basel, Switzerland.


Brun A.,Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis | Price E.R.,University of Wisconsin - Madison | Gontero-Fourcade M.N.,Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis | Fernandez-Marinone G.,Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis | And 5 more authors.
Journal of Experimental Biology | Year: 2014

Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular mechanisms. Based on a few previous studies, the capacity for paracellular nutrient absorption seems greater in flying mammals than in nonflying mammals, but there has been little investigation of the mechanisms driving this difference. Therefore, we studied three species each of bats (Artibeus lituratus, Sturnira lilium and Carollia perspicillata) and nonflying mammals (Akodon montensis, Mus musculus and Rattus norvegicus). Using standard pharmacokinetic techniques in intact animals, we confirmed the greater paracellular nutrient absorption in the fliers, comparing one species in each group. Then we conducted in situ intestinal perfusions on individuals of all species. In both approaches, we measured the absorption of 3OMD-glucose, a nonmetabolizable glucose analog absorbed both paracellularly and transcellularly, as well as L-arabinose, which has no mediated transport. Fractional absorption of L-arabinose was three times higher in the bat (S. lilium: 1.2±0.24) than in the rodent (A. montensis: 0.35±0.04), whereas fractional absorption of 3OMD-glucose was complete in both species (1.46±0.4 and 0.97±0.12, respectively). In agreement, bats exhibited two to 12 times higher L-arabinose clearance per square centimeter nominal surface area than rodents in intestinal perfusions. Using Larabinose, we estimated that the contribution of the paracellular pathway to total glucose absorption was higher in all three bats (109-137%) than in the rodents (13-39%). These findings contribute to an emerging picture that reliance on the paracellular pathway for nutrient absorption is much greater in bats relative to nonflying mammals and that this difference is driven by differences in intestinal permeability to nutrient-sized molecules. © 2014. Published by The Company of Biologists Ltd.


PubMed | São Paulo State University, University of Wisconsin - Madison, Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis and National University of San Luis
Type: Journal Article | Journal: The Journal of experimental biology | Year: 2014

Water-soluble nutrients are absorbed by the small intestine via transcellular and paracellular mechanisms. Based on a few previous studies, the capacity for paracellular nutrient absorption seems greater in flying mammals than in nonflying mammals, but there has been little investigation of the mechanisms driving this difference. Therefore, we studied three species each of bats (Artibeus lituratus, Sturnira lilium and Carollia perspicillata) and nonflying mammals (Akodon montensis, Mus musculus and Rattus norvegicus). Using standard pharmacokinetic techniques in intact animals, we confirmed the greater paracellular nutrient absorption in the fliers, comparing one species in each group. Then we conducted in situ intestinal perfusions on individuals of all species. In both approaches, we measured the absorption of 3OMD-glucose, a nonmetabolizable glucose analog absorbed both paracellularly and transcellularly, as well as L-arabinose, which has no mediated transport. Fractional absorption of L-arabinose was three times higher in the bat (S. lilium: 1.20.24) than in the rodent (A. montensis: 0.350.04), whereas fractional absorption of 3OMD-glucose was complete in both species (1.460.4 and 0.970.12, respectively). In agreement, bats exhibited two to 12 times higher l-arabinose clearance per square centimeter nominal surface area than rodents in intestinal perfusions. Using L-arabinose, we estimated that the contribution of the paracellular pathway to total glucose absorption was higher in all three bats (109-137%) than in the rodents (13-39%). These findings contribute to an emerging picture that reliance on the paracellular pathway for nutrient absorption is much greater in bats relative to nonflying mammals and that this difference is driven by differences in intestinal permeability to nutrient-sized molecules.

Loading Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis collaborators
Loading Instituto Multidisciplinario Of Investigaciones Biologicas Of San Luis collaborators