Time filter

Source Type

The Exclusive Economic Zone of Chile defined by Easter Island and Salas y Gómez Island is in the South Pacific Sub-tropical Gyre (SPSG), putting it at the center of the most oligotrophic and biomass poor waters in the world. Only 10 biological oceanographic expeditions have entered this zone in 105 years (1905-2010). We review key aspects of the plankton ecosystem and biogeochemical function relevant for the understanding of and conservation planning for marine environments. Plankton production is limited by lack of dissolved inorganic fixed nitrogen, not phosphorous. Higher organic nitrogen levels might be biologically unavailable. Short-term experiments suggested iron is not limiting, yet iron still likely limits nitrogen fixation, and thus production, at longer time scales, as the presence of nitrogen-fixers is exceptionally low compared to other ocean gyres. Plankton function is dominated by the smallest unicellular organisms, picoplankton (<3 μm in diameter). The SPSG represents a center of high biodiversity for picoplankton, as well as heterotrophic organisms such as tinntinids, siphonophores, and possibly amphipods, although data for key zooplankton, such as copepods, are lacking. Many groups exhibit negative relationships between diversity and total plankton biomass. High diversity might result from dispersal from a very large metacommunity and minimal competition within functional groups. Whether an island-mass effect causes a real or apparent increase in plankton biomass around Easter Island must be confirmed by high-resolution sampling in situ. Long-term threats to the planktonic ecosystem may include climate change-enhanced ocean stratification and plastic marine debris accumulation. Finally, priorities for future research are highlighted. © 2014, Escuela de Ciencias del Mar. All rights reserved. Source

Bendif E.M.,Marine Biological Association of The United Kingdom | Probert I.,University Pierre and Marie Curie | Probert I.,French National Center for Scientific Research | Young J.R.,University College London | And 3 more authors.
Protist | Year: 2015

The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1. bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity. © 2015 Elsevier GmbH. Source

Rokitta S.D.,Alfred Wegener Institute for Polar and Marine Research | Von Dassow P.,University of Santiago de Chile | Von Dassow P.,Instituto Milenio Of Oceanografia | Von Dassow P.,Austral University of Chile | And 2 more authors.
BMC Genomics | Year: 2014

Background: Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. Results: The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. Conclusions: The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation. © 2014 Rokitta et al. Source

Bendif E.M.,Marine Biological Association of The United Kingdom | Probert I.,University Pierre and Marie Curie | Probert I.,French National Center for Scientific Research | Diaz-Rosas F.,University of Santiago de Chile | And 10 more authors.
Frontiers in Microbiology | Year: 2016

The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes). Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae, and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e., warm temperate to tropical waters). These data provide strong support for the hypothesis of past (and potentially ongoing) introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton. © 2016 Bendif, Probert, Díaz-Rosas, Thomas, van den Engh, Young and von Dassow. Source

Riquelme-Bugueno R.,University of Concepcion | Riquelme-Bugueno R.,Instituto Milenio Of Oceanografia | Correa-Ramirez M.,Instituto Milenio Of Oceanografia | Correa-Ramirez M.,Pontifical Catholic University of Valparaiso | And 5 more authors.
Journal of Geophysical Research C: Oceans | Year: 2015

Mesoscale eddies are prominent structures in the world's oceans generating a high degree of spatial and temporal heterogeneity that influences zooplankton distribution. Euphausiids (krill) are a key zooplankton group mainly inhabiting coastal upwelling areas where high productivity, advection, and eddy kinetic energy (EKE) play pivotal roles in the distribution and structure of zooplankton. We analyzed the spatial distribution of the Humboldt Current krill, Euphausia mucronata, in relation to environmental variability and mesoscale circulation during the 2007 austral spring. Using net-based zooplankton samples, remotely sensed environmental conditions, multivariate analysis, and generalized additive models, we described and tested the effect of oceanographic variability and mesoscale eddies on E. mucronata abundance and biomass. E. mucronata was significantly more abundant in coastal (97%) than oceanic habitats, and more abundant in cyclonic cores (mean: 76 indiv. m-2) than in surrounding waters (mean: 13-29 indiv. m-2). Abundance correlated to current and EKE fields at >10-20 cm s-1 and >50-200 cm2 s-2, respectively, and biomass correlated negatively to sea level anomaly and positively to alongshore winds. Krill abundance and biomass were also strongly coupled to both eddy dynamics and the coastal upwelling regime in spring 2007. Mesoscale eddies may doubly influence the E. mucronata population dynamic by retaining krill within them and, by advection from coastal to oligotrophic regions. Key Points: Eddy kinetic energy field provides strong heterogeneity to krill habitat Cyclonic cores concentrate higher krill abundance than their surrounding waters Eddy circulation and coastal upwelling impact the krill dynamics © 2015. American Geophysical Union. All Rights Reserved. Source

Discover hidden collaborations