Instituto Milenio Of Astrofisica

Santiago, Chile

Instituto Milenio Of Astrofisica

Santiago, Chile
Time filter
Source Type

Cohen R.E.,University of Concepción | Bidin C.M.,Católica del Norte University | Mauro F.,University of Concepción | Mauro F.,Instituto Milenio Of Astrofisica | And 2 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2017

We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature.We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation. © 2016 The Authors.

Minniti D.,Andrés Bello University | Minniti D.,Instituto Milenio Of Astrofisica | Minniti D.,Vatican Observatory | Palma T.,Andrés Bello University | And 48 more authors.
Astrophysical Journal Letters | Year: 2017

We use deep multi-epoch near-IR images of the VISTA Variables in the Vía Láctea (VVV) Survey to search for RR Lyrae stars toward the Southern Galactic plane. Here, we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster that matches the position of the previously known star cluster FSR 1716. The stellar density map of the field yields a >100σ detection for this candidate globular cluster that is centered at equatorial coordinates R.A.J2000 = 16:10:30.0, decl.J2000 = -53:44:56 and galactic coordinates l = 329.77812, b = -1.59227. The color-magnitude diagram of this object reveals a well-populated red giant branch, with a prominent red clump at K s = 13.35 ±0.05, and J - K s = 1.30 ±0.05. We present the cluster RR Lyrae positions, magnitudes, colors, periods, and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with an age >10 Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, days, and argue that this is a relatively metal-poor cluster with [Fe/H] = -1.5 ±0.4 dex. The mean extinction and reddening for this cluster are and E(J - K s) = 0.72 ±0.02 mag, respectively, as measured from the RR Lyrae colors and the near-IR color-magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is (m - M)0 = 14.38 ±0.03 mag, implying a distance D = 7.5 ±0.2 kpc and a Galactocentric distance R G = 4.3 kpc. © 2017. The American Astronomical Society. All rights reserved.

Neeley J.R.,Iowa State University | Marengo M.,Iowa State University | Bono G.,University of Rome Tor Vergata | Bono G.,National institute for astrophysics | And 20 more authors.
Astrophysical Journal | Year: 2017

We present new theoretical period-luminosity-metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances (Z = 0.0001-0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ 0, and extinction, A V, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia's first data release. For M4, we find a distance modulus of μ 0 = 11.257 ± 0.035 mag with A V = 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths. © 2017. The American Astronomical Society. All rights reserved.

Navarrete C.,University of Santiago de Chile | Navarrete C.,Instituto Milenio Of Astrofisica | Catelan M.,University of Santiago de Chile | Catelan M.,Instituto Milenio Of Astrofisica | And 11 more authors.
Astronomy and Astrophysics | Year: 2017

Aims. The globular cluster ω Centauri (NGC 5139) hosts hundreds of pulsating variable stars of different types, thus representing a treasure trove for studies of their corresponding period-luminosity (PL) relations. Our goal in this study is to obtain the PL relations for RR Lyrae and SX Phoenicis stars in the field of the cluster, based on high-quality, well-sampled light curves in the near-infrared (IR). Methods. Observations were carried out using the VISTA InfraRed CAMera (VIRCAM) mounted on the Visible and Infrared Survey Telescope for Astronomy (VISTA). A total of 42 epochs in J and 100 epochs in KS were obtained, spanning 352 days. Point-spread function photometry was performed using DoPhot and DAOPHOT crowded-field photometry packages in the outer and inner regions of the cluster, respectively. Results. Based on the comprehensive catalog of near-IR light curves thus secured, PL relations were obtained for the different types of pulsators in the cluster, both in the J and KS bands. This includes the first PL relations in the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and periods of Type II Cepheids and RR Lyrae stars were used to derive an updated true distance modulus to the cluster, with a resulting value of (m-M)0 = 13.708 ± 0.035 ± 0.10 mag, where the error bars correspond to the adopted statistical and systematic errors, respectively. Adding the errors in quadrature, this is equivalent to a heliocentric distance of 5.52 ± 0.27 kpc. © 2017 ESO.

Minniti D.,Andrés Bello University | Minniti D.,Instituto Milenio Of Astrofisica | Minniti D.,Vatican Observatory | Dekany I.,University of Heidelberg | And 24 more authors.
Astronomical Journal | Year: 2017

Deep near-IR images from the VISTA Variables in the Vía Láctea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the fourth Galactic quadrant (295° < ℓ < 350°, -2.°24 < b < -1.°05). The sample's distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyrae population does not extend beyond ℓ ∼ 340°, and the sample's spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations. © 2017. The American Astronomical Society. All rights reserved.

Loading Instituto Milenio Of Astrofisica collaborators
Loading Instituto Milenio Of Astrofisica collaborators