Time filter

Source Type

Malvinas Argentinas, Argentina

Katz M.J.,Instituto Leloir | Acevedo J.M.,German Cancer Research Center | Wappner P.,CONICET | Wappner P.,University of Buenos Aires
Fly | Year: 2014

In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment. © 2014 Taylor & Francis Group, LLC. Source

Garaicoechea L.,Instituto Nacional de Tecnologia Agropecuaria | Aguilar A.,Instituto Nacional de Tecnologia Agropecuaria | Parra G.I.,U.S. National Institutes of Health | Bok M.,Instituto Nacional de Tecnologia Agropecuaria | And 5 more authors.
PLoS ONE | Year: 2015

Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epi-topes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis. Source

Pimentel J.,Instituto Leloir | Boccaccio G.L.,Instituto Leloir | Boccaccio G.L.,CONICET | Boccaccio G.L.,University of Buenos Aires
Frontiers in Molecular Neuroscience | Year: 2014

The transcriptome at the synapse consists of thousands of messengers encoding several cellular functions, including a significant number of receptors and ion channels and associated proteins. The concerted translational regulation of all these molecules contributes to the dynamic control of synaptic strength. Cumulative evidence supports that dendritic RNA granules and mRNA-silencingfoci play an important role in translational regulation. Several relevant RBPs - FMRP; FUS/TLS;TDP-43; Staufen; Smaug; Pumilio; CPEB; HuD; ZBP1; and DDX6 among others - form granules that contain dormant mRNAs repressed by multiple pathways. Recent reports indicate that dendritic granules may contain stalled polysomes, and furthermore, active translation may occur in association with RNA granules. Here, we discuss the molecules and pathways involved inthis continuum of RNA granules that contain masked mRNAs, mRNAs trapped in inactive polysomes or mRNAs engaged in translation. © 2014 Pimentel and Boccaccio. Source

Thomas M.G.,Instituto Leloir | Thomas M.G.,CONICET | Loschi M.,Instituto Leloir | Loschi M.,CONICET | And 4 more authors.
Cellular Signalling | Year: 2011

Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival. © 2010 Elsevier Inc. Source

Perez-Perri J.I.,Instituto Leloir | Perez-Perri J.I.,CONICET | Acevedo J.M.,Instituto Leloir | Acevedo J.M.,CONICET | And 3 more authors.
International Journal of Molecular Sciences | Year: 2011

Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions. © 2011 by the authors. Source

Discover hidden collaborations