Time filter

Source Type

Normanton M.,Instituto Israelita Of Ensino E Pesquisa Albert Einstein Iiep Ae | Normanton M.,University of Sao Paulo | Alvarenga H.,Instituto Israelita Of Ensino E Pesquisa Albert Einstein Iiep Ae | Alvarenga H.,University of Sao Paulo | And 6 more authors.

Since 2004, when a case report describing the use of human mesenchymal stem cells (hMSCs) infusion as a therapy for GVHD after bone marrow transplantation, a new perspective in MSC function emerged. Since then hMSCs immunomodulatory potential became the target of several studies. Although great progress has been made in our understanding of hMSCs, their effect on T cell remains obscure. Our study has confirmed the already described effect of hMSCs on lymphocytes proliferation and survival. We also show that the impairment of lymphocyte proliferation and apoptosis is contact-independent and occurs in a prostaglandin-independent manner. A potential correlation between IL-7 and hMSCs effect is suggested, as we observed an increase in IL-7 receptors (CD127) on lymphocyte membrane in MSC presence. Additionally, blocking IL-7 in hMSCs-lymphocytes co-cultures increased lymphocytes apoptosis and we also have demonstrated that hMSCs are able to produce this interleukin. Moreover, we found that during Th1/Th17 differentiation in vitro, hMSCs presence leads to Th1/Th17 cells with reduced capacity of INF-y and IL-17 secretion respectively, regardless of having several pro-inflammatory cytokines in culture. We did not confirm an increment of Treg in these cultures, but a reduced percentage of INF-y/IL-17 secreting cells was observed, suggesting that the ratio between anti and proinflammatory cells changed. This changed ratio is very important to GvHD therapy and links hMSCs to an anti-inflammatory role. Taken together, our findings provide important preliminary results on the lymphocyte pathway modulated by MSCs and may contribute for developing novel treatments and therapeutic targets for GvHD and others autoimmune diseases. © 2014 Normanton et al. Source

Discover hidden collaborations