Time filter

Source Type

Sancho M.,Complutense University of Madrid | Sancho M.,Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC | Ferrero J.J.,Complutense University of Madrid | Ferrero J.J.,Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC | And 6 more authors.
Nitric Oxide - Biology and Chemistry | Year: 2014

Increased nitric oxide (NO) production seems to play a key role in cyclophosphamide (CYP)-induced cystitis, although the underlying mechanisms and the relative involvement of the different NO synthase (NOS) isoforms remain to be elucidated. Moreover, the role of the urethra in this process is also unclear. In this study, we have analyzed the changes in the expression and distribution of the inducible (iNOS), endothelial (eNOS) and neuronal (nNOS) isoforms of NOS, and the alterations in nerve-mediated contractility in the bladder and urethra of CYP-treated rats. Accordingly, Wistar rats were treated with 150 mg kg-1 CYP for 4 (acute treatment) or 48 h (intermediate treatment), or with 70 mg kg-1 CYP every 3 days for 10 days (chronic treatment), and the changes in protein expression were assessed by immunohistofluorescence and in Western blots, while mRNA expression was assessed by conventional and quantitative PCR. Similarly, nerve-mediated contractility was analyzed in vitro. Unexpectedly, no iNOS expression was detected in CYP-treated animals, while a transient downregulation of nNOS expression and a progressive upregulation of eNOS was observed, although the eNOS accumulated was not in the active phosphorylated form. Qualitative changes in mRNA expression were also observed in the bladder and urethra, although contractility only diminished in the bladder and this change was not dependent on NOS activity. These findings suggest that spatiotemporal alterations in NO production by constitutive NOS may be involved in the pathogenicity of CYP. Further studies will be necessary to understand the contribution of eNOS to the increases in NO associated with bladder inflammation, or that of free radicals. © 2013 Elsevier B.V. All rights reserved.

Lafuente-Sanchis A.,Complutense University of Madrid | Lafuente-Sanchis A.,Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC | Triguero D.,Complutense University of Madrid | Triguero D.,Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC | And 2 more authors.
Andrology | Year: 2014

Erectile dysfunction (ED) is very prevalent in the older population, although the ageing-related mechanisms involved in the development of ED are poorly understood. We propose that age-induced differences in nerve- and endothelium-mediated smooth muscle contractility in the corpus cavernosum (CC) could be found between a senescent-accelerated mouse prone (SAMP8) and senescent-accelerated mouse resistant (SAMR1) strains. We analysed the changes in muscle tension induced by electrical field stimulation (EFS) or agonist addition 'in vitro', assessing nerve density (adrenergic, cholinergic and nitrergic), the expression of endothelial nitric oxide synthase (eNOS), cGMP accumulation and the distribution of interstitial cells (ICs) by immunofluorescence. We observed no change in both the nerve-dependent adrenergic excitatory contractility at physiological levels of stimulation and in the nitrergic inhibitory response in SAMP8 animals. Unlike cholinergic innervation, the density of adrenergic and nitrergic nerves increased in SAMP8 mice. In contrast, smooth muscle sensitivity to exogenous noradrenaline (NA) was slightly reduced, whereas cGMP accumulation in response to EFS and DEA/NO, and relaxations to DEA/NO and sildenafil, were not modified. No changes in the expression of eNOS and in the distribution of vimentin-positive ICs were detected in the aged animals. The ACh induced atropine-sensitive biphasic endothelium-dependent responses involved relaxation at low concentrations that turned into contractions at the highest doses. CC relaxation was mainly because of the production of NO together with some relaxant prostanoid, which did not change in SAMP8 animals. In contrast, the contractile component was considerably higher in the aged animals and it was completely inhibited by indomethacin. In conclusion, a clear imbalance towards enhanced production of contractile prostanoids from the endothelium may contribute to ED in the elderly. On the basis of these data, we propose the senescence-accelerated mouse model as a reliable tool to analyse the basic ageing mechanisms of the CC. © 2014 American Society of Andrology and European Academy of Andrology.

Loading Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC collaborators
Loading Instituto Investigacion Sanitaria Hospital Clinico San Carlos IdISSC collaborators