Time filter

Source Type

Luz F.C.,University of Rome Tor Vergata | Rocha M.H.,Federal University of Itajuba | Lora E.E.S.,Federal University of Itajuba | Venturini O.J.,Federal University of Itajuba | And 3 more authors.
Energy Conversion and Management | Year: 2015

The key objective of this paper is to analyze the techno-economic feasibility of this alternative for the Brazilian municipalities, classified according to population subgroups, using this parameter as a basis for the calculation of the municipal solid waste generated, the project costs and revenues. Different expenses were taken into consideration, like equipments and installation costs, operation and maintenance costs and the interest rate of the investment. In relation to revenues, they come from of the sale of electricity, the incomes of the recyclable materials, the fees paid by the Brazilian municipalities for the disposal of municipal solid waste in sanitary landfills and incomes by the carbon credits. An analysis of each population subgroup, combining three different economical scenarios was done, with an annual rate of interests of 10.58% for Scenario 1, 7.5% for Scenario 2 and 15% for Scenario 3. The economic feasibility was evaluated using as economic indicators the net present value and the internal rate of return. The net present value was positive for the municipalities with more than 60,714 inhabitants for the Scenario 1, 34,203 for Scenario 2 and 259,845 for Scenario 3. A hypothetic gasification plant is capable to generate 905 kW/ton municipal solid waste for a population of 60,714 inhabitants (Scenario 1), 794 kW/ton municipal solid waste for a population of 34,203 inhabitants (Scenario 2) and 1065 kW/ton municipal solid waste for a population of 259,845 inhabitants (Scenario 3). It is concluded that the economic feasibility increases with the installation of bigger units, showing a positive scale up gains, therefore as higher the capacity of the installation lower the specific costs and higher are the benefits. © 2015 Elsevier Ltd. All rights reserved. Source

Reno M.L.G.,Federal University of Itajuba | Lora E.E.S.,Federal University of Itajuba | Palacio J.C.E.,Federal University of Itajuba | Venturini O.J.,Federal University of Itajuba | And 2 more authors.
Energy | Year: 2011

Nowadays one of the most important environmental issues is the exponential increase of the greenhouse effect by the polluting action of the industrial and transport sectors. The production of biofuels is considered a viable alternative for the pollution mitigation but also to promote rural development. The work presents an analysis of the environmental impacts of the methanol production from sugarcane bagasse, taking into consideration the balance of the energy life cycle and its net environmental impacts, both are included in a LCA (Life Cycle Assessment) approach. The evaluation is done as a case study of a 100,000 t/y methanol plant, using sugarcane bagasse as raw material. The methanol is produced through the BTL (Biomass to Liquid) route. The results of the environmental impacts were compared to others LCA studies of biofuel and it was showed that there are significant differences of environmental performance among the existing biofuel production system, even for the same feedstock. The differences are dependent on many factors such as farming practices, technology of the biomass conversion. With relation to the result of output/input ratio, the methanol production from sugarcane bagasse showed to be a feasible alternative for the substitution of an amount of fossil methanol obtained from natural gas. © 2010 Elsevier Ltd. Source

Reno M.L.G.,Federal University of Itajuba | Olmo O.A.D.,Icidca Instituto Cubano Of Investigaciones Of Los Derivados Of La Cana Of Azucar | Palacio J.C.E.,Federal University of Itajuba | Lora E.E.S.,Federal University of Itajuba | Venturini O.J.,Federal University of Itajuba
Energy Conversion and Management | Year: 2014

The use of biomasses is becoming increasingly appealing alternative, to give an partial solution lack of energy, with an ecofriendly approach, having on sugarcane a solid fundament; that receives the new and valuable complement of the innovative concept of the biorefineries it is productive installations, that can be summarized as to reach the higher overall yield from the raw materials, with the lowest environmental impact, at minimum energy input and giving the maximum of the energy output. The biorefinery is the true valuable option of a wide diversification, with by-products like the single cell protein and biogas from the distillery vinasse, new oxidants like methanol, second generation biofuels, biobutanol, etc. In this context this paper presents a study of five different configurations of biorefineries. Each case study being a system based on an autonomous distillery or sugar mill with an annexed distillery and coproduction of methanol from bagasse. The paper includes the use of sugarcane harvest residues (mainly straw) and a BIG-GT plant (Biomass Integrated Gasification-Gas Turbine) as alternatives to fulfill the energy demands of the complex. © 2014 Elsevier B.V. All rights reserved. Source

Silva Lora E.E.,Federal University of Itajuba | Escobar Palacio J.C.,Federal University of Itajuba | Rocha M.H.,Federal University of Itajuba | Grillo Reno M.L.,Federal University of Itajuba | And 2 more authors.
Energy | Year: 2011

Biofuels world production has increased sharply in recent years. Oil reserves depletion, the oil high price and the confidence in biofuels "carbon neutrality" are the main causes of this phenomenon. However, claims related to the negative consequences of biofuel programs are frequent; mainly those related to the biofuels/food competition and sustainability. This paper aims to contribute for the development of a framework for sustainability indicators as a tool for performance assessment. The most used indicators to measure the biofuels sustainability are: Life Cycle Energy Balance (LCEB), quantity of fossil energy substituted per hectare, co-product energy allocation, life cycle carbon balance and changes in soil utilization. On the other hand, existing assessment tools, such as Life Cycle Assessment (LCA) and Integrated Environmental Assessment (IEA), are compared emphasizing their advantages and disadvantages. Main constraints related to the studied frontiers, as well as the lack of reliable data and their effects are also discussed. Discussions are held on the basis of real life cycle studies carried out by the authors about palm oil biodiesel and different alternatives for the stillage treatment and disposal. Finally, suggestions and recommendations are made to improve existing methodologies for biofuels sustainability evaluation, all this from a south perspective. © 2010 Elsevier Ltd. Source

Rocha M.H.,Federal University of Itajuba | Capaz R.S.,Federal University of Itajuba | Lora E.E.S.,Federal University of Itajuba | Nogueira L.A.H.,Federal University of Itajuba | And 3 more authors.
Renewable and Sustainable Energy Reviews | Year: 2014

The key objective of this study is to evaluate and compare the main environmental life cycle impacts and energy balance of ethanol from sugarcane and biodiesel from soybean and palm oil, in the Brazilian conditions. The methodological tool used was the Life Cycle Assessment (LCA), in Well-To-Tank (WTT) perspective. A process based on cradle-to-gate attribution LCA method, was applied as the technique to assess the health and environmental impacts of ethanol and biodiesel production systems. The environmental assessment was carried out using the SimaPro 7.0.1 software and the CML 2 baseline 2000 methodology, developed by the Institute of Environmental Sciences (CML). The assumed common analysis base in this paper was 1.0 MJ of energy released by combustion of the analyzed biofuels. The environmental impacts were quantified and ranked in categories of impacts: Abiotic Depletion Potential (ADP), Global Warming Potential (GWP), Human Toxicity Potential (HTP), Acidification Potential (ACP) and Eutrophication Potential (ETP). In addition, the results were compared by meta-analysis with previous published studies. The Net Energy Relation (NER) in the life cycle of biofuels is an important indicator of the technical and environmental performance evaluation of biofuels production. In this study the NER of ethanol and biodiesel from soybean and palm oil were estimated and compared with previous published studies. Direct and embodied energy inputs, based on defined system boundaries, were used to estimate the energy requirement of crops production, juice/oil extraction, and ethanol/biodiesel industrial production. It is possible to conclude, that biofuel production systems with higher agricultural yields and extensive use of co-products in its life cycle present best environmental results. The analysis of obtained results shows that the choices of co-products allocation method, transport distance and inventory database of the country, have significant influence on the results of the life cycle environmental performance of biofuels. © 2014 Elsevier Ltd. Source

Discover hidden collaborations