Time filter

Source Type

de Borba L.,Instituto Carlos Chagas ICC FIOCRUZ PR | Strottmann D.M.,Instituto Carlos Chagas ICC FIOCRUZ PR | de Noronha L.,Pontifical Catholic University of Parana | Mason P.W.,University of Texas Medical Branch | And 2 more authors.
PLoS Neglected Tropical Diseases | Year: 2012

Background: Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. Methodology/Principal Findings: We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3 (NS3 hel) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3 hel mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. Conclusions/Significance: The generation of recombinant viruses carrying specific E and NS3 hel proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage), the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology. © 2012 de Borba et al. Source

Zanluca C.,Instituto Carlos Chagas ICC FIOCRUZ PR | Zanluca C.,Federal University of Parana | Mazzarotto G.A.C.A.,Instituto Carlos Chagas ICC FIOCRUZ PR | Bordignon J.,Instituto Carlos Chagas ICC FIOCRUZ PR | Dos Santos C.N.D.,Instituto Carlos Chagas ICC FIOCRUZ PR
PLoS ONE | Year: 2014

Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bk, IgG2ak and IgG1k isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3) and dengue serotype-specific (DENV-2 or -3). Additionally, some mAbs cross-reacted with yellow fever virus (YFV), West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV). None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV). Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA) for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research. © 2014 Zanluca et al. Source

Koishi A.C.,Federal University of Parana | Koishi A.C.,Instituto Carlos Chagas ICC FIOCRUZ PR | Zanello P.R.,Instituto Carlos Chagas ICC FIOCRUZ PR | Bianco E.M.,Federal University of Pernambuco | And 3 more authors.
PLoS ONE | Year: 2012

Dengue is a significant public health problem worldwide. Despite the important social and clinical impact, there is no vaccine or specific antiviral therapy for prevention and treatment of dengue virus (DENV) infection. Considering the above, drug discovery research for dengue is of utmost importance; in addition natural marine products provide diverse and novel chemical structures with potent biological activities that must be evaluated. In this study we propose a target-free approach for dengue drug discovery based on a novel, rapid, and economic in situ enzyme-linked immunosorbent assay and the screening of a panel of marine seaweed extracts. The in situ ELISA was standardized and validated for Huh7.5 cell line infected with all four serotypes of DENV, among them clinical isolates and a laboratory strain. Statistical analysis showed an average S/B of 7.2 and Z-factor of 0.62, demonstrating assay consistency and reliability. A panel of fifteen seaweed extracts was then screened at the maximum non-toxic dose previously determined by the MTT and Neutral Red cytotoxic assays. Eight seaweed extracts were able to reduce DENV infection of at least one serotype tested. Four extracts (Phaeophyta: Canistrocarpus cervicornis, Padina gymnospora; Rhodophyta: Palisada perforate; Chlorophyta: Caulerpa racemosa) were chosen for further evaluation, and time of addition studies point that they might act at an early stage of the viral infection cycle, such as binding or internalization. © 2012 Koishi et al. Source

Discover hidden collaborations