Instituto Carlos Chagas Fiocruz

Curitiba, Brazil

Instituto Carlos Chagas Fiocruz

Curitiba, Brazil
Time filter
Source Type

Rezende T.M.T.,Instituto Aggeu Magalhaes FIOCRUZ | Romao T.P.,Instituto Aggeu Magalhaes FIOCRUZ | Batista M.,Instituto Carlos Chagas FIOCRUZ | Berry C.,University of Cardiff | And 2 more authors.
Insect Biochemistry and Molecular Biology | Year: 2017

A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors. © 2017 Elsevier Ltd

Tellez J.,Federal University of Santa Catarina | Tellez J.,Manuela Beltrán University | Romero I.,Federal University of Santa Catarina | Romero I.,Manuela Beltrán University | And 3 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2017

Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmaniainfected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (SbV), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S-transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of SbV. By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1, GSS, and ABCB5 resulted in an increased leishmanicidal effect of SbV exposure in vitro. Our results suggest that human MDMs infected with L. braziliensis and treated with SbV express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime. Copyright © 2017 American Society for Microbiology. All Rights Reserved.

Moreira C.M.D.N.,Instituto Carlos Chagas Fiocruz | Batista C.M.,Instituto Carlos Chagas Fiocruz | Fernandes J.C.,Instituto Carlos Chagas Fiocruz | Kessler R.L.,Instituto Carlos Chagas Fiocruz | And 2 more authors.
PLoS ONE | Year: 2017

The AP-1 Adaptor Complex assists clathrin-coated vesicle assembly in the trans-Golgi network (TGN) of eukaryotic cells. However, the role of AP-1 in the protozoan Trypanosoma cruzi—the Chagas disease parasite—has not been addressed. Here, we studied the function and localization of AP-1 in different T. cruzi life cycle forms, by generating a gene knockout of the large AP-1 subunit gamma adaptin (TcAP1-γ), and raising a monoclonal antibody against TcAP1-γ. Co-localization with a Golgi marker and with the clathrin light chain showed that TcAP1-γ is located in the Golgi, and it may interact with clathrin in vivo, at the TGN. Epimastigote (insect form) parasites lacking TcAP1-γ (TcγKO) have reduced proliferation and differentiation into infective metacyclic trypomastigotes (compared with wild-type parasites). TcγKO parasites have also displayed significantly reduced infectivity towards mammalian cells. Importantly, TcAP1-γ knockout impaired maturation and transport to lysosome-related organelles (reservosomes) of a key cargo—the major cysteine protease cruzipain, which is important for parasite nutrition, differentiation and infection. In conclusion, the defective processing and transport of cruzipain upon AP-1 ablation may underlie the phenotype of TcγKO parasites. © 2017 Moreira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Melo F.T.V.,Laboratorio Of Biologia Celular | Giese E.G.,Laboratorio Of Biologia Celular | Furtado A.P.,Laboratorio Of Biologia Celular | Soares M.J.,Instituto Carlos Chagas Fiocruz | And 3 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2011

The family Nematotaeniidae, tapeworms commonly found in the small intestines of amphibians and reptiles, includes 27 recognised species distributed among four genera: Bitegmen Jones, Cylindrotaenia Jewell, Distoichometra Dickey and Nematotaenia Lühe. The taxonomy of these cestodes is poorly defined, due in part to the difficulties of observing many anatomical traits. This study presents and describes a new genus and species of nematotaeniid parasite found in cane toads (Rhinella marina) from eastern Brazilian Amazonia. The cestodes were collected during the necropsy of 20 hosts captured in the urban area of Belém, Pará. The specimens were fixed and processed for light microscopy, scanning electron microscopy (SEM) and three-dimensional (3D) reconstruction. Samples were also collected for molecular analyses. The specimens presented a cylindrical body, two testes and paruterine organs. However, they could not be allocated to any of the four existing nematotaeniid genera due to the presence of two each of dorsal compact medullary testes, cirri, cirrus pouches, genital pores, ovaries and vitelline glands per mature segment. Lanfrediella amphicirrus gen. nov. sp. nov. is the first nematotaeniid studied using Historesin analysis, SEM and 3D reconstruction, and it is the Second taxon for which molecular data have been deposited in GenBank.

Mosimann A.L.P.,Instituto Carlos Chagas Fiocruz | Bordignon J.,Instituto Carlos Chagas Fiocruz | Mazzarotto G.C.A.,Instituto Carlos Chagas Fiocruz | Motta M.C.M.,Federal University of Rio de Janeiro | And 2 more authors.
Memorias do Instituto Oswaldo Cruz | Year: 2011

Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection.

Eger I.,Instituto Carlos Chagas Fiocruz | Eger I.,Vale do Itajai University | Soares M.J.,Instituto Carlos Chagas Fiocruz
Journal of Microbiological Methods | Year: 2012

Here we describe the visualization by confocal microscopy of ingested gold (15. nm)-labeled transferrin in epimastigote forms of the protozoan Trypanosoma cruzi. Intracellular gold labeling was evident at two sites, which represent the bottom of the cytopharynx and the reservosomes. The gold tracer was best observed by confocal microscopy by using the 633. nm excitation wavelength. Intracellular gold clusters larger than 60. nm could be visualized by either gold reflection (light scattering) or photoluminescence modes. The gold reflection mode, the gold photoluminescence mode and the anti-transferrin immunofluorescence image of gold-labeled transferrin showed co-localization, thus demonstrating that the gold visualization modes did not represent artifacts or mislocalization of the biomarker. Visualization of protein-gold nanoparticle complexes by confocal microscopy thus emerges as a promising imaging tool to explore the endocytic pathway in trypanosomes and other cell types, as well as to perform immunolocalization studies using gold-labeled secondary antibodies. © 2012 Elsevier B.V.

Batista C.M.,Instituto Carlos Chagas Fiocruz | Medeiros L.C.S.,Instituto Carlos Chagas Fiocruz | Eger I.,Instituto Carlos Chagas Fiocruz | Soares M.J.,Instituto Carlos Chagas Fiocruz
BioMed Research International | Year: 2014

Reservosomes are large round vesicles located at the posterior end of epimastigote forms of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. They are the specific end organelles of the endocytosis pathway of T. cruzi, and they play key roles in nutrient uptake and cell differentiation. These lysosome-like organelles accumulate ingested macromolecules and contain large amounts of a major cysteine proteinase (cruzipain or GP57/51 protein). Aim of this study was to produce a monoclonal antibody (mAb) against a recombinant T. cruzi cruzipain (TcCruzipain) that specifically labels the reservosomes. BALB/c mice were immunized with purified recombinant TcCruzipain to obtain the mAb. After fusion of isolated splenocytes with myeloma cells and screening, a mAb was obtained by limiting dilution and characterized by capture ELISA. We report here the production of a kappa-positive monoclonal IgG antibody (mAb CZP-315.D9) that recognizes recombinant TcCruzipain. This mAb binds preferentially to a protein with a molecular weight of about 50 kDa on western blots and specifically labels reservosomes by immunofluorescence and transmission electron microscopy. The monoclonal CZP-315.D9 constitutes a potentially powerful marker for use in studies on the function of reservosomes of T. cruzi. © 2014 Cassiano Martin Batista et al.

Cardoso J.,Instituto Carlos Chagas FIOCRUZ | de Paula Lima C.,Instituto Carlos Chagas FIOCRUZ | Leal T.,Federal University of Ouro Preto | Gradia D.F.,Instituto Carlos Chagas FIOCRUZ | And 4 more authors.
PLoS ONE | Year: 2011

Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell. © 2011 Cardoso et al.

Kalb Souza L.C.,Instituto Carlos Chagas Fiocruz | Goncalves Pinho R.E.G.,Instituto Carlos Chagas Fiocruz | de Paula Lima C.V.,Instituto Carlos Chagas Fiocruz | Perdigao Fragoso S.,Instituto Carlos Chagas Fiocruz | Jose Soares M.,Instituto Carlos Chagas Fiocruz
Memorias do Instituto Oswaldo Cruz | Year: 2013

Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

Cardoso J.,Instituto Carlos Chagas Fiocruz | Soares M.J.,Instituto Carlos Chagas Fiocruz
Memorias do Instituto Oswaldo Cruz | Year: 2010

Citral, the main constituent of lemongrass (Cymbopogon citratus) essential oil, was added to Trypanosoma cruzi cultures grown in TAU3AAG medium to observe the effect on the epimastigote-to-trypomastigote differentiation process (metacyclogenesis). Our results showed that citral (20 μg/mL) did not affect epimastigote viability or inhibit the differentiation process. Concentrations higher than 60 μg/mL, however, led to 100% cell death (both epimastigote and trypomastigote forms). Although epimastigotes incubated with 30 μg/mL citral were viable and able to adhere to the substrate, we observed around 50% inhibition in metacyclogenesis, with a calculated concentration that inhibited metacyclogenesis by 50% after 24 h (IC50/24 h) of about 31 μg/mL. Treatment with 30 μg/mL citral did not hinder epimastigote multiplication because epimastigote growth resumed when treated cells were transferred to a drugfree liver infusion tryptose culture medium. Metacyclogenesis was almost totally abolished at 40 μg/mL after 24 h of incubation. Furthermore, the metacyclic trypomastigotes obtained in vitro were similarly susceptible to citral, with an IC50/24 h, concentration that killed 50% of the cells after 24 h, of about 24.5 μg/mL. Therefore, citral appears to be a good candidate as an inhibitory drug for further studies analyzing the T. cruzi metacyclogenesis process.

Loading Instituto Carlos Chagas Fiocruz collaborators
Loading Instituto Carlos Chagas Fiocruz collaborators