Time filter

Source Type

Madrid, Spain

Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development. Source

Wu J.,Mount Sinai School of Medicine | Roman A.-C.,Instituto Cajal | Carvajal-Gonzalez J.M.,Mount Sinai School of Medicine | Mlodzik M.,Mount Sinai School of Medicine
Nature Cell Biology | Year: 2013

Planar cell polarity (PCP) is cellular polarity within the plane of an epithelial tissue or organ. PCP is established through interactions of the core Frizzled (Fz)/PCP factors and, although their molecular interactions are beginning to be understood, the upstream input providing the directional bias and polarity axis remains unknown. Among core PCP genes, Fz is unique as it regulates PCP both cell-autonomously and non-autonomously, with its extracellular domain acting as a ligand for Van Gogh (Vang). We demonstrate in Drosophila melanogaster wings that Wg (Wingless) and dWnt4 (Drosophila Wnt homologue) provide instructive regulatory input for PCP axis determination, establishing polarity axes along their graded distribution and perpendicular to their expression domain borders. Loss-of-function studies reveal that Wg and dWnt4 act redundantly in PCP determination. They affect PCP by modulating the intercellular interaction between Fz and Vang, which is thought to be a key step in setting up initial polarity, thus providing directionality to the PCP process. © 2013 Macmillan Publishers Limited. All rights reserved. Source

Perez-Escudero A.,Instituto Cajal | Vicente-Page J.,Instituto Cajal | Hinz R.C.,Instituto Cajal | Arganda S.,Instituto Cajal | And 2 more authors.
Nature Methods | Year: 2014

Animals in groups touch each other, move in paths that cross, and interact in complex ways. Current video tracking methods sometimes switch identities of unmarked individuals during these interactions. These errors propagate and result in random assignments after a few minutes unless manually corrected. We present idTracker, a multitracking algorithm that extracts a characteristic fingerprint from each animal in a video recording of a group. It then uses these fingerprints to identify every individual throughout the video. Tracking by identification prevents propagation of errors, and the correct identities can be maintained indefinitely. idTracker distinguishes animals even when humans cannot, such as for size-matched siblings, and reidentifies animals after they temporarily disappear from view or across different videos. It is robust, easy to use and general. We tested it on fish (Danio rerio and Oryzias latipes), flies (Drosophila melanogaster), ants (Messor structor) and mice (Mus musculus). Source

Arevalo M.-A.,Instituto Cajal | Azcoitia I.,Complutense University of Madrid | Garcia-Segura L.M.,Instituto Cajal
Nature Reviews Neuroscience | Year: 2015

Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline. © 2014 Macmillan Publishers Limited. All rights reserved. Source

Frade J.M.,Instituto Cajal | Lopez-Sanchez N.,Instituto Cajal
Cell Cycle | Year: 2010

Cumulative evidence indicates that neuronal cell cycle re-entry represents an early and critical event in AD, recapitulating known hallmarks of the disease including tau hyperphosphorylation and production of Aβ peptide-containing plaques. Neurons that duplicate their DNA are rarely observed to undergo mitosis, and they remain for long time as tetraploid cells, in accordance with the chronic course of the disease. We have recently shown that cell cycle re-entry and somatic tetraploidization occurs during normal development in a subpopulation of RGCs, giving rise to enlarged neurons with extensive dendritic trees. Tetraploization in these neurons occurs in response to the activation of the neurotrophin receptor p75NTR by an endogenous source of NGF. in contrast, BDNF inhibits G2/M transition in tetraploid RGCs, preventing their death by apoptosis. In AD both proNGF and p75NTR are overexpressed, and AD-associated oxidative conditions have been shown to enhance proNGF function. This suggests that p75NTR could be a trigger for neuronal tetraploidization in AD, being the p75NTR-mediated pathway a putative target for therapeutical intervention. Functional changes in affected neurons, derived from tetraploidy-associated hypertrophy, could compromise neuronal viability. The known decline of BDNF/TrkB expression in AD could facilitate G2/M transition and apoptosis in tetraploid neurons. © 2010 Landes Bioscience. Source

Discover hidden collaborations