Instituto Biomedico Of Vigo

Vigo, Spain

Instituto Biomedico Of Vigo

Vigo, Spain
SEARCH FILTERS
Time filter
Source Type

Olivieri D.N.,University of Vigo | Garet E.,University of Vigo | Estevez O.,University of Vigo | Sanchez-Espinel C.,Nanoimmunotech SL | And 3 more authors.
Molecular Immunology | Year: 2016

The Squamata order represents a major evolutionary reptile lineage, yet the structure and expression of immunoglobulins in this order has been scarcely studied in detail. From the genome sequences of four Squamata species (Gekko japonicus, Ophisaurus gracilis, Pogona vitticeps and Ophiophagus hannah) and RNA-seq datasets from 18 other Squamata species, we identified the immunoglobulins present in these animals as well as the tissues in which they are found. All Squamata have at least three immunoglobulin classes; namely, the immunoglobulins M, D, and Y. Unlike mammals, however, we provide evidence that some Squamata lineages possess more than one Cμ gene which is located downstream from the Cδ gene. The existence of two evolutionary lineages of immunoglobulin Y is shown. Additionally, it is demonstrated that while all Squamata species possess the λ light chain, only Iguanidae species possess the κ light chain. © 2016 Elsevier Ltd.


Olivieri D.N.,University of Vigo | Von Haeften B.,University of Vigo | Sanchez-Espinel C.,Nanoimmunotech SL | Faro J.,University of Vigo | And 4 more authors.
Immunogenetics | Year: 2014

Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org). © 2014 Springer-Verlag.


Olivieri D.,University of Vigo | Faro J.,University of Vigo | Faro J.,Instituto Biomedico Of Vigo | Faro J.,Instituto Gulbenkian Of Ciencia | And 4 more authors.
Immunogenetics | Year: 2013

Variable (V) domains of immunoglobulins (Ig) and T cell receptors (TCR) are generated from genomic V gene segments (V-genes). At present, such V-genes have been annotated only within the genome of a few species. We have developed a bioinformatics tool that accelerates the task of identifying functional V-genes from genome datasets. Automated recognition is accomplished by recognizing key V-gene signatures, such as recombination signal sequences, size of the exon region, and position of amino acid motifs within the translated exon. This algorithm also classifies extracted V-genes into either TCR or Ig loci. We describe the implementation of the algorithm and validate its accuracy by comparing V-genes identified from the human and mouse genomes with known V-gene annotations documented and available in public repositories. The advantages and utility of the algorithm are illustrated by using it to identify functional V-genes in the rat genome, where V-gene annotation is still incomplete. This allowed us to perform a comparative human-rodent phylogenetic analysis based on V-genes that supports the hypothesis that distinct evolutionary pressures shape the TCRs and Igs V-gene repertoires. Our program, together with a user graphical interface, is available as open-source software, downloadable at http://code.google.com/p/vgenextract/. © 2013 Springer-Verlag Berlin Heidelberg.


Olivieri D.N.,University of Vigo | Gambon-Cerda S.,University of Vigo | Gambon-Deza F.,Hospital do Meixoeiro | Gambon-Deza F.,Instituto Biomedico Of Vigo
Immunogenetics | Year: 2015

Information concerning the evolution of T lymphocyte receptors (TCR) can be deciphered from that part of the molecule that recognizes antigen presented by major histocompatibility complex (MHC), namely the variable (V) regions. The genes that code for these variable regions are found within the TCR loci. Here, we describe a study of the evolutionary origin of V genes that code for the α and β chains of the TCR loci of mammals. In particular, we demonstrate that most of the 35 TRAV and 25 TRBV conserved genes found in Primates are also found in other Eutheria, while in Marsupials, Monotremes, and Reptiles, these genes diversified in a different manner. We also show that in mammals, all TRAV genes are derived from five ancestral genes, while all TRBV genes originate from four such genes. In Reptiles, the five TRAV and three out of the four TRBV ancestral genes exist, as well as other V genes not found in mammals. We also studied the TRGV and TRDV loci from all mammals, and we show a relationship of the TRDV to the TRAV locus throughout evolutionary time. © 2015, Springer-Verlag Berlin Heidelberg.


Olivieri D.N.,University of Vigo | Gambon-Deza F.,Hospital do Meixoeiro | Gambon-Deza F.,Instituto Biomedico Of Vigo
Immunogenetics | Year: 2015

The adaptive immune system uses V genes for antigen recognition. However, the evolutionary diversification and selection processes within and across species and orders remain poorly understood. Here, we studied the amino acid (AA) sequences obtained from the translated in-frame V exons of immunoglobulins (IG) and T cell receptors (TR) from 16 primate species whose genomes have been sequenced. Multi-species comparative analysis supports the hypothesis that V genes in the IG loci undergo birth/death processes, thereby permitting rapid adaptability over evolutionary time. We also show that multiple cladistic groupings exist in the TRA (35 clades) and TRB (25 clades) V gene loci and that each primate species typically contributes at least one V gene to each of these clades. The results demonstrate that IG V genes and TR V genes have quite different evolutionary pathways; multiple duplications can explain the IG loci results, while coevolutionary pressures can explain the phylogenetic results of the TR V gene loci. Our results suggest that there exist evolutionary relationships between V gene clades in the TRA and TRB loci. Due to the long-standing preservation of these clades, such genes may have specific and necessary roles for the viability of a species. © 2015, Springer-Verlag Berlin Heidelberg.

Loading Instituto Biomedico Of Vigo collaborators
Loading Instituto Biomedico Of Vigo collaborators