Instituto Asturiano Of Odontologia

Oviedo, Spain

Instituto Asturiano Of Odontologia

Oviedo, Spain
SEARCH FILTERS
Time filter
Source Type

Vega J.A.,University of Oviedo | Lopez-Muniz A.,University of Oviedo | Calavia M.G.,University of Oviedo | Garcia-Suarez O.,University of Oviedo | And 7 more authors.
CNS and Neurological Disorders - Drug Targets | Year: 2012

During the last decade skin biopsy has been confirmed as a tool to provide diagnostic information on some peripheral neuropathies. Most studies were focused on intraepithelial nerve fibers and few studies have investigated large myelinated fibers or whether corpuscles in human skin change quantitatively or qualitatively in pathologies of the peripheral or central nervous system. The main objective of this article is to provide a comprehensive review of Meissner's corpuscles including their distribution, density and age changes, development, molecular composition, cellular anatomy and physiology. We also describe their involvement in several pathologies and suggest including this dermal structure in the routine study of skin biopsies, looking for changes to be used as potential markers for several disorders. Finally the article draws the main aspects of how to study Meissner's corpuscles in skin biopsies and gives a view on future perspectives for implementing their use in clinical practice. © 2012 Bentham Science Publishers.


Levanti M.B.,Messina University | Guerrera M.C.,Messina University | Calavia M.G.,University of Oviedo | Ciriaco E.,Messina University | And 5 more authors.
Neuroscience Letters | Year: 2011

Acid-sensing ion channels (ASICs) in mammals monitor acid sensing and mechanoreception. They have a widespread expression in the central and peripheral nervous system, including the gut. The distribution of ASICs in zebrafish is known only in larvae and at the mRNA level. Here we have investigated the expression and cell distribution of ASIC2 in the gut of adult zebrafish using PCR, Western blot and immunohistochemistry. ASIC2 mRNA was detected in the gut, and a protein consistent with predicted ASIC2 (64. kDa molecular mass) was detected by Western blot. ASIC2 positivity was found in a subpopulation of myenteric neurons in the enteric nervous system, as well in enteroendocrine epithelial cells. These data demonstrate for the first time the occurrence of ASIC2 in the gut of adult zebrafish where it presumably acts as a chemosensor and a mechanosensor. © 2011 Elsevier Ireland Ltd.


Cobo J.L.,University of Oviedo | Cobo J.L.,Hospital Universitario Central Of Asturias | Abbate F.,Messina University | de Vicente J.C.,Hospital Universitario Central Of Asturias | And 5 more authors.
Neuroscience Letters | Year: 2017

The human craniofacial muscles innervated by the facial nerve typically lack muscle spindles. However these muscles have proprioception that participates in the coordination of facial movements. A functional substitution of facial proprioceptors by cutaneous mechanoreceptors has been proposed but at present this alternative has not been demonstrated. Here we have investigated whether other kinds of sensory structures are present in two human facial muscles (zygomatic major and buccal). Human checks were removed from Spanish cadavers, and processed for immunohistochemical detection of nerve fibers (neurofilament proteins and S100 protein) and two putative mechanoproteins (acid-sensing ion channel 2 and transient receptor potential vanilloid 4) associated with mechanosensing. Nerves of different calibers were found in the connective septa and within the muscle itself. In all the muscles analysed, capsular corpuscle-like structures resembling elongated or round Ruffini-like corpuscles were observed. Moreover the axon profiles within these structures displayed immunoreactivity for both putative mechanoproteins. The present results demonstrate the presence of sensory structures in facial muscles that can substitute for typical muscle spindles as the source of facial proprioception. © 2017 Elsevier B.V.


De Carlos F.,University of Oviedo | De Carlos F.,Instituto Asturiano Of Odontologia | Cobo J.,University of Oviedo | Cobo J.,Instituto Asturiano Of Odontologia | And 7 more authors.
Anatomical Record | Year: 2013

The coordinate neural regulation of the upper airways muscles is basic to control airway size and resistance. The superior constrictor pharyngeal muscle (SCPM) forms the main part of the lateral and posterior walls of the pharynx and typically is devoid of muscle spindles, the main type of proprioceptor. Because proprioception arising from SCPM is potentially important in the physiology of the upper airways, we have investigated if there are mechanical sensory nerve endings substitute for the muscle spindles. Samples of human pharynx were analyzed using immunohistochemistry associated to general axonic and Schwann cells markers (NSE, PGP 9.5, RT-97, and S100P), intrafusal muscle fiber markers, and putative mechanical sense proteins (TRPV4 and ASIC2). Different kinds of sensory corpuscles were observed in the pharynx walls (Pacini-like corpuscles, Ruffini-like corpuscles, spiral-wharves nerve structures, and others) which are supplied by sensory nerves and express putative mechanoproteins. No evidence of muscle spindles was observed. The present results demonstrate the occurrence of numerous and different morphotypes of sensory corpuscles/mechanoreceptors in human pharynx that presumably detect mechanical changes in the upper airways and replace muscle spindles for proprioception. Present findings are of potential interest for the knowledge of pathologies of the upper airways with supposed sensory pathogenesis. © 2013 Wiley Periodicals, Inc.


Cobo T.,Instituto Asturiano Of Odontologia | Cobo T.,University of Oviedo | Obaya A.,University of Oviedo | Cal S.,University of Oviedo | And 7 more authors.
European Journal of Histochemistry | Year: 2015

The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered. © Copyright T. Cobo et al., 2015.


Calavia M.G.,University of Oviedo | Montano J.A.,San Antonio de Murcia Catholic University | Garcia-Suarez O.,University of Oviedo | Feito J.,University of Oviedo | And 7 more authors.
Cellular and Molecular Neurobiology | Year: 2010

Acid-sensing ion channels (ASICs) are the members of the degenerin/epithelial sodium channel (Deg/ENaC) superfamily which mediate different sensory modalities including mechanosensation. ASICs have been detected in mechanosensory neurons as well as in peripheral mechanoreceptors. We now investigated the distribution of ASIC1, ASIC2, and ASIC3 proteins in human cutaneous Pacinian corpuscles using immunohistochemistry and laser confocal-scanner microscopy. We detected different patterns of expression of these proteins within Pacinian corpuscles. ASIC1 was detected in the central axon co-expressed with RT-97 protein, ASIC2 was expressed by the lamellar cells of the inner core co-localized with S100 protein, and ASIC3 was absent. These results demonstrate for the first time the differential distribution of ASIC1 and ASIC2 in human rapidly adapting low-threshold mechanoreceptors, and suggest specific roles of both proteins in mechanotransduction. © 2010 Springer Science+Business Media, LLC.


Sole-Magdalena A.,ADITAS | Sole-Magdalena A.,University of Oviedo | Revuelta E.G.,University of Oviedo | Menenez-Diaz I.,University of Oviedo | And 10 more authors.
Microscopy Research and Technique | Year: 2011

Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa+C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa+C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa+C. The intensity of immunostaining was high for β-ENa+C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa+C, and TRPV4, being absent for α-ENa+C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. © 2010 Wiley-Liss, Inc.


PubMed | Santander University, Instituto Asturiano Of Odontologia, Autonomous University of Chile and University of Oviedo
Type: Journal Article | Journal: Histology and histopathology | Year: 2015

Obstructive sleep apnea is a disease characterized by repetitive breathing during sleep that lead to reduced oxygen saturation and sleep disturbance among other symptoms. Obstructive sleep apnea is caused by blockade of the upper respiratory airway, although the pathogenic mechanism underlying this occlusion remains unknown. In these studies we explored the hypothesis that alterations in the innervation, especially mechanosensory innervation, of the pharynx may contribute to obstructive sleep apnea. We tested this hypothesis by analyzing the innervation of the human pharynx in normal individuals and in subjects clinically diagnosed with obstructive sleep apnea. Using immunohistochemistry for axon and Schwann cells, as well as for two putative mechanoproteins (ASIC2 and TRPV4), we observed a significant reduction in the density of nerve fibers in the submucosa of patients with obstructive sleep apnea as well as morphological abnormalities in mechanosensory corpuscles. Importantly, while ASIC2 and TRPV4 expression was regularly found in the axons of mechanosensory corpuscles distributed throughout the muscular layer in the control subjects, it was absent in patients with obstructive sleep apnea. These findings support that neurological alterations are important contributors to the pathogenesis of obstructive sleep apnea.


Amato V.,Messina University | Vina E.,University of Oviedo | Calavia M.G.,University of Oviedo | Guerrera M.C.,Messina University | And 8 more authors.
Microscopy Research and Technique | Year: 2011

TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish. © 2011 Wiley Periodicals, Inc.


PubMed | Instituto Asturiano Of Odontologia
Type: Journal Article | Journal: European journal of histochemistry : EJH | Year: 2015

The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered.

Loading Instituto Asturiano Of Odontologia collaborators
Loading Instituto Asturiano Of Odontologia collaborators