Entity

Time filter

Source Type


Valente R.S.,Instituto Gulbenkian Of Ciencia | Valente R.S.,Institute Tecnologia Quimica e Biologica Antonio Xavier | Xavier K.B.,Instituto Gulbenkian Of Ciencia | Xavier K.B.,Institute Tecnologia Quimica e Biologica Antonio Xavier
Journal of Bacteriology | Year: 2016

Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. © 2015, American Society for Microbiology. All Rights Reserved. Source


Correia V.G.,New University of Lisbon | Correia V.G.,Institute Tecnologia Quimica e Biologica Antonio Xavier | Ferraria A.M.,University of Lisbon | Pinho M.G.,Institute Tecnologia Quimica e Biologica Antonio Xavier | Aguiar-Ricardo A.,New University of Lisbon
Biomacromolecules | Year: 2015

Water is one of the most valuable resources today and its purity is crucial to health and society well-being. The access to safe drinking water is decreasing in the world, which can have a huge socio-economic impact especially in developing countries, more prone to water-associated diseases. The goal of this work was to develop an innovative, fast, and cost-effective 3D material capable of decontaminating water. We have used an eco-friendly strategy, combining plasma surface activation and supercritical fluid technology to produce, for the first time, a 2-oxazoline-grafted 3D surface with broad-spectrum contact-active antimicrobial properties. Oligo(2-methyl-2-oxazoline) quaternized with N,N-dimethyldodecylamine and grafted to a chitosan (CHT) scaffold (CHT-OMetOx-DDA) efficiently and quickly (<3 min) killed >99.999% of Staphylococcus aureus and Escherichia coli cells upon direct contact and avoided bacterial adhesion to the materials surface, which is important for the prevention of biofilm formation. As a proof of concept, CHT-OMetOx-DDA scaffold was demonstrated to be suitable for water purification efficiently killing the microorganisms present in different water samples within minutes of contact and without leaching to the water. Additionally, we report for the first time a new method to clearly distinguish two mechanisms of action of bioactive surfaces: contact-active and releasing systems. © 2015 American Chemical Society. Source


Harris L.G.,University of Swansea | Murray S.,University of Swansea | Pascoe B.,University of Swansea | Bray J.,University of Oxford | And 19 more authors.
PLoS ONE | Year: 2016

Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host's immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST) and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE) among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages. © 2016 Harris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Kowacz M.,Institute Tecnologia Quimica e Biologica Antonio Xavier | Marchel M.,Institute Tecnologia Quimica e Biologica Antonio Xavier | Juknaite L.,New University of Lisbon | Esperanca J.M.S.S.,Institute Tecnologia Quimica e Biologica Antonio Xavier | And 3 more authors.
Journal of Crystal Growth | Year: 2016

We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems. © 2016 Elsevier B.V. Source

Discover hidden collaborations