Time filter

Source Type

Zamorano F.,University of Santiago de Chile | Zamorano F.,University for Development | Billeke P.,University of Santiago de Chile | Billeke P.,University for Development | And 8 more authors.

The capacity to inhibit prepotent and automatic responses is crucial for proper cognitive and social development, and inhibitory impairments have been considered to be key for some neuropsychiatric conditions. One of the most used paradigms to analyze inhibitory processes is the Go-Nogo task (GNG). This task has been widely used in psychophysical and cognitive EEG studies, and more recently in paradigms using fMRI. However, a technical limitation is that the time resolution of fMRI is poorer than that of the EEG technique. In order to compensate for these temporal constraints, it has become common practice in the fMRI field to use longer inter-stimulus intervals (ISI) than those used in EEG protocols. Despite the noticeable temporal differences between these two techniques, it is currently assumed that both approaches assess similar inhibitory processes. We performed an EEG study using a GNG task with both short ISI (fast-condition, FC, as in EEG protocols) and long ISI (slow-condition, SC, as in fMRI protocols). We found that in the FC there was a stronger Nogo-N2 effect than in the SC. Moreover, in the FC, but not in the SC, the number of preceding Go trials correlated positively with the Nogo-P3 amplitude and with the Go trial reaction time; and negatively with commission errors. In addition, we found significant topographical differences for the Go-P3 elicited in FC and SC, which is interpreted in terms of different neurotransmitter dynamics. Taken together, our results provide evidence that frequency of stimulus presentation in the GNG task strongly modulates the behavioral response and the evoked EEG activity. Therefore, it is likely that short-ISI EEG protocols and long-ISI fMRI protocols do not assess equivalent inhibitory processes. © 2014 Zamorano et al. Source

Moguillansky C.V.,University of Paris Descartes | Moguillansky C.V.,Institute Sistemas Complejos Of Valparaiso | O'Regan J.K.,University of Paris Descartes | Petitmengin C.,TELECOM Business School | Petitmengin C.,Ecole Normale Superieure de Paris
Frontiers in Human Neuroscience

Despite the fact that the rubber hand illusion (RHI) is an experimental paradigm that has been widely used in the last 14 years to investigate different aspects of the sense of bodily self, very few studies have sought to investigate the subjective nature of the experience that the RHI evokes. The present study investigates the phenomenology of the RHI through a specific elicitation method. More particularly, this study aims at assessing whether the conditions usually used as control in the RHI have an impact in the sense of body ownership and at determining whether there are different stages in the emergence of the illusion. The results indicate that far from being "all or nothing," the illusion induced by the RHI protocol involves nuances in the type of perceptual changes that it creates. These perceptual changes affect not only the participants' perception of the rubber hand but also the perception of their real hand. In addition, perceptual effects may vary greatly between participants and, importantly, they evolve over time. © 2013 Valenzuela Moguillansky, O'Reganand Petitmengin. Source

Salesses P.,Massachusetts Institute of Technology | Schechtner K.,Massachusetts Institute of Technology | Schechtner K.,AIT Austrian Institute of Technology | Schechtner K.,Vienna University of Technology | And 2 more authors.

A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities. © 2013 Salesses et al. Source

Bustos S.,Harvard University | Gomez C.,Stanford University | Hausmann R.,Harvard University | Hausmann R.,Santa Fe Institute | And 3 more authors.

In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the products that they export are relevant for understanding the dynamics of economic development. Here we study the presence and absence of industries in international and domestic economies and show that these networks are significantly nested. This means that the less filled rows and columns of these networks' adjacency matrices tend to be subsets of the fuller rows and columns. Moreover, we show that their nestedness remains constant over time and that it is sustained by both, a bias for industries that deviate from the networks' nestedness to disappear, and a bias for the industries that are missing according to nestedness to appear. This makes the appearance and disappearance of individual industries in each location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral model of development introduced by Hidalgo and Hausmann (2009). We show that the model can reproduce the high level of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of capabilities available in countries and required by products. In the context of the neutral model, this implies that the high level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network properties in the evolution of economic networks. © 2012 Bustos et al. Source

Moyano L.G.,Telefonica | Cardenas J.P.,Technical University of Madrid | Cardenas J.P.,Institute Sistemas Complejos Of Valparaiso | Salcedo J.,Technical University of Madrid | And 2 more authors.

Most complex technological networks are defined in such a way that their global properties are manifested at a dynamical level. An example of this is when internal dynamical processes are constrained to predefined pathways, without the possibility of alternate routes. For instance, large corporation software networks, where several flow processes take place, are typically routed along specific paths. In this work, we propose a model to describe the global characteristics of this kind of processes, where the dynamics depends on the state of the nodes, represented by two possibilities: responsive or blocked. We present numerical simulations that show rich global behavior with unexpected emerging properties. In particular, we show that two different regimes appear as a function of the total network load. Each regime is characterized by developing either a unimodal or a bimodal distribution for the density of responsive nodes, directly related to global efficiency. We provide a detailed explanation for the main characteristics of our results as well as an analysis of the implications for real technological systems. © 2011 American Institute of Physics. Source

Discover hidden collaborations