Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: HEALTH-2007-2.3.2-10 | Award Amount: 14.12M | Year: 2009

This proposal will establish an integrated and synergistic network to address the challenge of multiple drug resistant tuberculosis (MDR-TB) facing the EU. The objective will be attained through the establishment of a European consortium of expert partners with extensive experience in the conduct of basic and clinical research relating to MDR-TB, TB control and epidemiology. This Consortium will achieve this by: Conducting an extensive and focused programme of basic/clinical research to improve the diagnosis and management of MDR-TB Develop a broad training curriculum leading to the creation of a new generation of scientists and clinicians expert in the management of drug resistant TB Create field sites across the EU with the capacity for evaluating new diagnostic systems and novel drug therapies on behalf of European industry and government Establish a unified and robust quality assurance mechanism for the accurate and rapid diagnosis of drug resistance and develop appropriate safety standard for European health care workers Improving our understanding of the transmission of MDR-TB at the molecular level and host-related risk factors for its development, The Consortium will disseminate its findings and analyses widely to the benefit of specialists, general health care staff, EU governments, NGOs and health policy makers. This will provide researchers and clinicians with appropriate knowledge and improved tools to fight MDR-TB, and assist European industry in the development of new diagnostics and treatments. Consortium outputs will assist governments in the development and implementation of appropriate health and social policies to limit and control the spread of MDR-TB within the member states of the EU. Internationally, these objectives will assist countries bordering the EU and international agencies such as the WHO and ECDC in reducing the impact of drug resistance.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-08-2014 | Award Amount: 25.06M | Year: 2015

The TBVAC2020 proposal builds on the highly successful and long-standing collaborations in subsequent EC-FP5-, FP6- and FP7-funded TB vaccine and biomarker projects, but also brings in a large number of new key partners from excellent laboratories from Europe, USA, Asia, Africa and Australia, many of which are global leaders in the TB field. This was initiated by launching an open call for Expressions of Interest (EoI) prior to this application and to which interested parties could respond. In total, 115 EoIs were received and ranked by the TBVI Steering Committee using proposed H2020 evaluation criteria. This led to the prioritisation of 52 R&D approaches included in this proposal. TBVAC2020 aims to innovate and diversify the current TB vaccine and biomarker pipeline while at the same time applying portfolio management using gating and priority setting criteria to select as early as possible the most promising TB vaccine candidates, and accelerate their development. TBVAC2020 proposes to achieve this by combining creative bottom-up approaches for vaccine discovery (WP1), new preclinical models addressing clinical challenges (WP2) and identification and characterisation of correlates of protection (WP5) with a directive top-down portfolio management approach aiming to select the most promising TB vaccine candidates by their comparative evaluation using objective gating and priority setting criteria (WP6) and by supporting direct, head-to head or comparative preclinical and early clinical evaluation (WP3, WP4). This approach will both innovate and diversify the existing TB vaccine and biomarker pipeline as well as accelerate development of most promising TB vaccine candidates through early development stages. The proposed approach and involvement of many internationally leading groups in the TB vaccine and biomarker area in TBVAC2020 fully aligns with the Global TB Vaccine Partnerships (GTBVP).


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP-SICA | Phase: HEALTH-2009-4.3.1-2 | Award Amount: 6.02M | Year: 2010

Buruli ulcer disease (BUD), caused by Mycobacterium ulcerans, is a neglected bacterial infection of the poor in remote rural areas, mostly affecting children. BUD, the third most common mycobacterial disease in immunocompetent humans after tuberculosis and leprosy, is most endemic in West Africa, but cases have been reported from more than 30 countries. BUD is a mutilating disease leading to severe disability. Treatment with antibiotics is possible but is long-lasting and requires injections, shows treatment failures and drug resistance may occur. A vaccine against M. ulcerans would protect persons at risk in highly endemic areas and could be used as a therapeutic vaccine to shorten duration of treatment and to prevent relapses. The general objective of BuruliVac is to identify and develop novel vaccine candidates suitable for translation into clinical application. This objective will be achieved by a multidisciplinary approach involving among others basic and applied research in immunology, bioinformatics, molecular genetics, tropical medicine, microbiology and clinical bacteriology. As currently no existing vaccine lead candidate is available, the consortium will identify and develop new vaccine candidates of different types, will evaluate them using bioinformatics, applied genomics and proteomics and will subject them to consecutive test systems. For evaluation of vaccine candidates regarding their application in humans, the consortium will also study the immune response and disease immunopathology to define correlates of protection. Essential pre-clinical testing in vitro and in vivo will select a small number of candidates that is amenable to be introduced into clinical studies.


Grant
Agency: European Commission | Branch: H2020 | Program: COFUND-EJP | Phase: SC1-PM-05-2016 | Award Amount: 74.06M | Year: 2017

The overarching goal of the European Human Biomonitoring Initiative (HBM4EU) is to generate knowledge to inform the safe management of chemicals and so protect human health. We will use human biomonitoring to understand human exposure to chemicals and resulting health impacts and will communicate with policy makers to ensure that our results are exploited in the design of new chemicals policies and the evaluation of existing measures. Key objectives include: Harmonizing procedures for human biomonitoring across 26 countries, to provide policy makers with comparable data on human internal exposure to chemicals and mixtures of chemicals at EU level; Linking data on internal exposure to chemicals to aggregate external exposure and identifying exposure pathways and upstream sources. Information on exposure pathways is critical to the design of targeted policy measures to reduce exposure; Generating scientific evidence on the causal links between human exposure to chemicals and negative health outcomes; and Adapting chemical risk assessment methodologies to use human biomonitoring data and account for the contribution of multiple external exposure pathways to the total chemical body burden. We will achieve these objectives by harmonizing human biomonitoring initiatives in 26 countries, drawing on existing expertise and building new capacities. By establishing National Hubs in each country to coordinate activities, we will create a robust Human Biomonitoring Platform at European level. This initiative contributes directly to the improvement of health and well-being for all age groups, by investigating how exposure to chemicals affects the health of different groups, such as children, pregnant women, foetuses and workers. We will also investigate how factor such as behavior, lifestyle and socio-economic status influence internal exposure to chemicals across the EU population. This knowledge will support policy action to reduce chemical exposure and protect health.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-02-2016 | Award Amount: 1.96M | Year: 2017

The general objective of PRO-METROFOOD is to bring the emerging METROFOOD-RI ESFRI project to the level of maturity required for entering in the active project list, strengthening the Consortium and planning the future phases. The specific objectives have been set up in close relationship with the ESFRI SWG & IG Recommendation. 4 specific objectives have been identified: OBJ1 design strategies on the medium and long terms; OBJ2 provide the organizational framework of METROFOOD-RI; OBJ3 demonstrate the capability of METROFOOD-RI to supply scientific services and prepare the chart of services; OBJ4 establish plans to coherently integrate METROFOOD-RI into the European landscape, realising coordination with EU and National initiatives and positioning at a global level. The strategic Plan will be tailored to the Pan European Infrastructure current and envisaged capabilities, market opportunities and business needs. It will be developed by involving funding agencies, relevant authorities supporting METROFOOD-RI and other stakeholders. A management conceptual model will be developed and the framework will be designed under operational, strategic and institutional aspects. Management procedures suitable for the different phases will set up, so to cover short and long-term goals. A Quality Documentation System (QDS) will be developed and a data management plan (DMP) will be defined. In order to demonstrate the capability of PRO-METROFOOD to supply services and to test its inter-operability, pilot services will be performed. In strict accordance with the METROFOOD-RI strategies, plans to coherently integrate METROFOOD-RI into the European landscape will be developed. A Communication plan and education and training programmes will be developed for the different phases of METROFOOD-RI realization (earl, preparatory, implementation and operational phases). For each phase the main coordinator, the target group and the main training subject areas will be specified.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: HEALTH-2009-2.3.2-2 | Award Amount: 19.00M | Year: 2010

With 14.4 million prevalent cases and 1.7 million deaths tuberculosis (TB) remains one of the most serious infectious diseases to date. An estimated 2 billion people are believed to be infected with Mycobacterium tuberculosis and at risk of developing disease. Multi- and extensively drug resistant strains are increasingly appearing in many parts of the world, including Europe. While with current control measures the Millennium Development Goals (MDGs) set for 2015 may be achieved, reaching these would still leave a million people per year dying from TB. Much more effective measures, particularly more effective vaccines will be essential to reach the target of eliminating TB in 2050. Two successive FP5 and FP6 funded projects, Tuberculosis (TB) Vaccine Cluster (2000-2003) and TBVAC (2004-2008), have in the recent decade made significant contributions to the global TB vaccine pipeline, with four vaccines (out of nine globally) being advanced to clinical stages. Both projects strongly contributed to the strengthening and integration of expertise and led to a European focus of excellence that is unique in the area of TB vaccine development. In order to sustain and accelerate the TB vaccine developments and unique integrated excellence of TBVAC, a specific legal entity was created named TuBerculosis Vaccine Initiative (TBVI). The NEWTBVAC proposal is the FP7 successor of TBVAC, and will be coordinated by TBVI. The proposal has the following objectives : 1) To sustain and innovate the current European pipeline with new vaccine discoveries and advance promising candidates to clinical stages; 2) To design new, second generation vaccines based new prime-boost strategies and/or new (combinations of) promising subunit vaccines, that will impact on reduction of disease in exposed individuals; 3) To sustain and innovate discovery, evaluation and testing of new biomarkers, that will be critically important for future monitoring of clinical trials.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.3.1-1 | Award Amount: 7.73M | Year: 2013

Important progress has been made in the field of HPV-disease prevention with the development and implementation of HPV vaccines and HPV DNA screening. In the CoheaHr project, the (cost-) effectiveness of different European preventive strategies will be compared. The goal is to build a reliable and comparable evidence base on the (cost-) effectiveness of these policies implemented under country-specific preventive services conditions. To achieve this goal, a set of specific tasks will be carried out. Three randomized trials will be performed in organised screening settings to determine: i) whether self-collection of specimens for HPV DNA testing is an effective and feasible alternative for physician-based sampling, ii) whether screening intervals can be extended in women vaccinated at young age, iii) whether vaccinating women two years before entering the screening programme will favour the use of HPV screening. The first and third randomized trials are multi-country trials whereas the second trial will be carried out in a cohort of Finnish women vaccinated in 2007. For unvaccinated, 25-45 year old women participating in screening, acceptability and general feasibility of HPV vaccination will be studied in a multi-country demonstration survey. Comparisons by transmission models are included to provide long-term projections for cancer incidence and mortality. Furthermore, the establishment of a standardised joint European data warehouse will be continued and extended for (continuous) evaluation of comparative effectiveness of screening and vaccination policies in Europe. Finally, there will be an ongoing effort for producing systematic reviews and meta-analyses which provide a sustainable resource for evidence. CoheaHr will provide a strong evidence base which enable policy and other decision makers to make informed decision-making on HPV prevention strategies, thereby contributing to strengthening health systems and health services interventions in Europe.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-CA | Phase: SEC-2011.5.4-1 | Award Amount: 1.59M | Year: 2012

The features of biological toxins like ricin, botulinum toxins, staphylococcal enterotoxins and saxitoxin place them at the interface of classical biological and chemical agents. They could be used for terrorist attacks on the basis of their availability, ease of preparation, the high toxicity and/or the lack of medical countermeasures. Some of the toxins are considered among the most relevant agents in the field of bioterrorism, for which the current preparedness within European countries should be further improved to limit casualties in the case of an intentional release. While different technologies for toxin detection and analysis have been established, hardly any universally agreed gold standards are available. Generally, proficiency tests and certified reference materials for the mentioned toxins are lacking. In this context, the recent results of the first international proficiency test on the detection of one of the toxins provided highly relevant insights and a basis for further development. EQuATox will address these issues by creating a network of expert laboratories among EU 27 and associated countries, focussing on the detection of biological toxins and integrating experts from the security, verification, health and food sector. Four large EU-wide proficiency tests on the mentioned toxins will be organised with 27 laboratories from 20 countries worldwide so far being interested in participating and joining the network. The task will include the generation and characterisation of toxin reference materials which in the future can be further developed into ISO-compliant certified reference materials. Based on the status quo of toxin detection described in EQuATox, good practices and critical gaps in detection technology will be identified as foundation to harmonise and standardise detection capabilities. Furthermore, recommendations will be given on how to close these gaps and to minimise potential health and security risks for European citizens.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-06-2016 | Award Amount: 4.11M | Year: 2017

Rabies is the deadliest disease on earth (99.9% fatality rate). Annually, ~58.000 people die from rabies, more than half of them are children. Many remain unvaccinated because of the high costs and the need for a cold-chain. Likewise, despite the existence of an excellent yellow fever (YF) vaccine, yearly ~30.000 people die of YF. The 80-year old low-tech production process does not allow to produce sufficient doses. There is now a real danger that major YF-outbreaks become uncontrollable. We aim at developing an efficient, safe, cheap, thermostable and easy-to-produce vaccine that can be needle-free administered, that protects against both rabies and YF, and that can be implemented in routine prophylactic paediatric vaccination. For this, we will employ our (P01a) proprietary infectious DNA (iDNA) vaccine technology. Simple, even needle-free injection of a low dose (1-10g) of this easy-to-produce naked plasmid in mice and hamsters launches the YF vaccine virus and protects hamsters as efficiently as the commercial vaccine against lethal YF challenge. The iDNA YF vaccine will be used as vector to express relevant protective rabies antigens. Dual protection of such chimeric iDNA rabies/YF vaccine will be demonstrated against lethal rabies and YFV challenge in small animal models. Likewise, chimeric rabies/Japanese encephalitis and rabies/Zika virus iDNA vaccine candidates will be generated using this versatile platform. Next, induction of protective immunity will be demonstrated in rhesus macaques. The iDNA vaccines combine the benefits of both the YF live-attenuated vaccine (highly efficient life-long induction of immunity) and the thermo-stability, ease-of-production and the potential to customize (in response to emerging medical needs) of classical DNA vaccines. A path towards advanced pre-clinical and clinical development of such novel vaccines will be developed in compliance with European regulatory and WHO prequalification requirements.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH-2009-4.2-3 | Award Amount: 3.77M | Year: 2010

The goals of the PREHDICT study are to determine prerequisites and strategies for vaccination in European countries and to predict the impact of vaccination on screening programmes. To achieve these goals, a multiple HPV type transmission model will be built to describe the type-specific incidence and clearance of HPV infections. This model will be linked to an individual-based simulation model used for modelling the impact of screening. For HPV-related diseases other than cervical cancer and genital warts, Markov models will be developed after critical review of the role of HPV. In the PREHDICT study, country-specific cost-effectiveness analyses will be performed for the vaccination and include determination of the vaccination age, the number of doses, the vaccination population, and the optimal catch-up vaccination age. Furthermore, the impact of vaccination on screening programmes will be assessed. This involves determination of the screening technology, screening frequency, and follow-up management of test-positive women. Special attention will be given to screening attendance and its relation to vaccination attendance. To have models with strong empirical support, the PREHDICT team will collect the most updated data on HPV infection, HPV-related disease, life-style factors, and demographics. Furthermore, HPV-type specific analyses will be performed on the outcomes of a vaccination trial, 3 large screening trials, and one self-sampling trial for screening non-attenders. By meta-analytical techniques, results will be pooled. The costs involved in the calculations will include the costs of organizing, running, and monitoring a vaccination and/or screening programme. The results of the PREHDICT study will be published in international peer-reviewed journals, posted on the WHO HPV information centre website and will also be systematically disseminated to all major stakeholders, in particular to decision makers at European, national and sub-national levels.

Loading Institute Scientifique Of Sante Publique collaborators
Loading Institute Scientifique Of Sante Publique collaborators