Time filter

Source Type

Pamplona, Spain

Font M.,Seccion de Modelizacion Molecular | Font M.,Institute Salud Tropical | Baquedano Y.,Institute Salud Tropical | Baquedano Y.,University of Navarra | And 9 more authors.
Journal of Molecular Graphics and Modelling | Year: 2015

Abstract A molecular modeling study has been carried out on two previously reported series of symmetric diselenide derivatives that show remarkable antileishmanial in vitro activity against Leishmania infantum intracellular amastigotes and in infected macrophages (THP-1 cells), in addition to showing favorable selectivity indices. Series 1 consists of compounds that can be considered as central scaffold constructed with a diaryl/dialkylaryl diselenide central nucleus, decorated with different substituents located on the aryl rings. Series 2 consists of compounds constructed over a diaryl diselenide central nucleus, decorated in 4 and 4′ positions with an aryl or heteroaryl sulfonamide fragment, thus forming the diselenosulfonamide derivatives. With regard to the diselenosulfonamide derivatives (2 series), the activity can be related, as a first approximation, with (a) the ability to release bis(4-aminophenyl) diselenide, the common fragment which can be ultimately responsible for the activity of the compounds. (b) the anti-parasitic activity achieved by the sulfonamide pharmacophore present in the analyzed derivatives. The data that support this connection include the topography of the molecules, the conformational behavior of the compounds, which influences the bond order, as well as the accessibility of the hydrolysis point, and possibly the hydrophobicity and polarizability of the compounds. © 2015 Elsevier Inc. Source

Torres E.,University of Navarra | Moreno-Viguri E.,University of Navarra | Moreno-Viguri E.,Institute Salud Tropical | Galiano S.,University of Navarra | And 13 more authors.
European Journal of Medicinal Chemistry | Year: 2013

As a continuation of our research and with the aim of obtaining new agents against Chagas disease, an extremely neglected disease which threatens 100 million people, eighteen new quinoxaline 1,4-di-N-oxide derivatives have been synthesized following the Beirut reaction. The synthesis of the new derivatives was optimized through the use of a new and more efficient microwave-assisted organic synthetic method. The new derivatives showed excellent in vitro biological activity against Trypanosoma cruzi. Compound 17, which was substituted with fluoro groups at the 6- and 7-positions of the quinoxaline ring, was the most active and selective in the cytotoxicity assay. The electrochemical study showed that the most active compounds, which were substituted by electron-withdrawing groups, possessed a greater ease of reduction of the N-oxide groups. © 2013 Elsevier Masson SAS. All rights reserved. Source

Discover hidden collaborations